Diagnosing Error in Object Detectors

Derek Hoiem Yodsawalai Chodpathumwan Qieyun Dai

Department of Computer Science

University of Illinois at Urbana-Champaign (UIUC)

Work supported in part by NSF awards IIS-1053768 and IIS-0904209, ONR MURI Grant N000141010934, and a research award from Google

Object detection is a collection of problems

Intra-class Variation for "Airplane"

Object detection is a collection of problems

Confusing Distractors for "Airplane"

Background

Similar Categories

Dissimilar Categories

Localization Error

How to evaluate object detectors?

- Average Precision (AP)
 - Good summary statistic for quick comparison
 - Not a good driver of research

	aero	bike	bird	boat	bottle	bus
a) base	.290	.546	.006	.134	.262	.394
b) BB	.287	.551	.006	.145	.265	.397
c) context	.328	.568	.025	.168	.285	.397

Typical evaluation through comparison of AP numbers

- We propose tools to evaluate
 - where detectors fail
 - potential impact of particular improvements

Detectors Analyzed as Examples on VOC 2007

Deformable Parts Model (DPM)

- Sliding window
- Mixture of HOG templates with latent HOG parts

Multiple Kernel Learning (MKL)

- Jumping window
- Various spatial pyramid bag of words features combined with MKL

Felzenszwalb et al. 2010 (v4)

Vedaldi et al. 2009

Top false positives: Airplane (DPM)

Top false positives: Dog (DPM)

Top false positives: Dog (MKL)

Top 5 FP

Summary of False Positive Analysis

Analysis of object characteristics

Additional annotations for seven categories: occlusion level, parts visible, sides visible

Level of occlusion: 2 (moderate) Parts visible: bike body, handlebars, wheel Parts not visible: seat View: side visible (front, top, etc., not visible) Area: 3233 pixels Aspect Ratio (w/h): 1.24

Occlusion Level

Normalized Average Precision

 Average precision is sensitive to number of positive examples

 $Precision = \frac{TruePositives}{TruePositives + FalsePositives}$

TruePositives = Recall $* N_j \leftarrow Number of object examples in subset j$

Normalized average precision: replace variable
 N_j with fixed N

Aspect Ratio: 2-3x better at detecting wide (side) views than tall views

Sides/Parts: best performance = direct side view with all parts visible

Conclusions

- Most errors that detectors make are reasonable
 - Localization error and confusion with similar objects
 - Misdetection of occluded or small objects
- Large improvements in specific areas (e.g., remove all background FPs or robustness to occlusion) has small impact in overall AP

 More specific analysis should be standard
- Our code and annotations are available online
 Automatic generation of analysis summary from standard annotations

www.cs.illinois.edu/homes/dhoiem/publications/detectionAnalysis_eccv12.tar.gz

Thank you!

www.cs.illinois.edu/homes/dhoiem/publications/detectionAnalysis_eccv12.tar.gz