

Shape Sharing for Object Segmentation

Jaechul Kim and Kristen Grauman University of Texas at Austin

Problem statement

Category-independent object segmentation:

Generate object segments in the image regardless of their categories.

Spectrum of existing approaches

color, textures, edges...

How to model top-down shape in a category-independent way?

Bottom-up

- + coherent mid-level regions
- + applicable to any image
- prone to over/under-segment
- e.g., Malisiewicz and Efros (BMVC 2007), Arbelaez et al. (CVPR 2009) Carreira and Sminchisescu (CVPR 2010) Endres and Hoiem (ECCV 2010)

Class-specific

- + robustness to low-level cues
- typically viewpoint specific
- requires class knowledge!
 - e.g., Active Contours (IJCV 1987) Borenstein and Ullman (ECCV 2002) Levin and Weiss (ECCV 2006) Kumar et.al. (CVPR 2005)

Our idea: Shape sharing

Semantically close

Semantically disparate

Object shapes are shared among different categories.

Shapes from one class can be used to segment another (*possibly unknown*) class: Enable category-independent shape priors

Basis of approach: transfer through matching

Global shape projection

Transfer category-independent shape prior

→ Segmentation

Approach: Shape projection

Test image

→ Segmentation

Approach: Shape projection

Test image

Segmentation

Approach: Shape projection

BPLRs

Boundary-Preserving Local Regions (BPLR):

Vs.

- Distinctively shaped
- Dense
- Repeatable

[Kim & Grauman, CVPR 2011]

→ Segmentation

Approach: Shape projection

Segmentation

Approach: Shape projection

Projection -> Agg

Aggregation

Segmentation

Approach: Refinement of projections

- Align with bottom-up evidence
- Include superpixels where majority of pixels overlap projection

Approach: Aggregating projections

Segmentation

Projection

Aggregation

Exploit partial agreement from multiple exemplars

Approach: Segmentation

$$E(y) = \sum_{\substack{p_i \in \mathcal{P} \\ \mathcal{P} \\ \mathcal{P}}} \underbrace{D_i(y_i)}_{i,j \in \mathcal{N}} + \sum_{\substack{i,j \in \mathcal{N} \\ \mathcal{P} \\ \mathcal{P}}} \underbrace{V_{i,j}(y_i, y_j)}_{i,j \in \mathcal{P}} \underbrace{y_i \in \{0 \text{ (bg)}, 1 \text{ (fg)}\}}_{Smoothness term}$$

Graph-cut optimization

Compute multiple segmentations by varying foreground bias:

$$D_{i}(y_{i},\lambda) = \begin{cases} D_{i}(y_{i}) + \lambda & \text{if } y_{i} = 1\\ D_{i}(y_{i}) - \lambda & \text{if } y_{i} = 0 \end{cases}$$
Parameter controlling data term bias

Output:

Carreira and Sminchisescu,

CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts PAMI 2012.

Experiments

Exemplar database:

PASCAL 2010 segmentation task training set (20 classes, 2075 objects)

Test datasets:

- PASCAL 2010 segmentation task validation set (20 classes, 964 images)
- Berkeley segmentation dataset (natural scenes and objects, 300 images)

Baselines:

- CPMC [Carreira and Sminchisescu, PAMI 2012]
- Object proposals [Endres and Hoiem, ECCV 2012]
- gPb+owt+ucm [Arbelaez et al., PAMI 2011]

Evaluation metric:

Best covering score w.r.t # of segments

Segmentation quality

Approach	Covering (%)	Num of segments
Shape sharing (Ours)	84.3	1448
CPMC [Carreira and Sminchisescu]	81.6	1759
Object proposals [Endres and Hoiem]	81.7	1540
gPb-owt-ucm [Arbelaez et al.]	62.8	1242
PASCAL 2010 dataset		

ApproachCovering (%)Num of segmentsShape sharing (Ours)75.61449CPMC [Carreira and Sminchisescu]74.11677Object proposals [Endres and Hoiem]72.31275gPb-owt-ucm [Arbelaez et al.]61.61483

Berkeley segmentation dataset

*Exemplars = PASCAL

When does shape sharing help most? Gain as a function of color easiness and object size

Easy to segment by color

Hard to segment by color

Gain by Shape Sharing

Compared to CPMC [Carreira and Sminchisescu., PAMI 2012]

Which classes share shapes?

Animals

Semantically disparate

Vehicles

Example results (good)

Shape sharing (ours)

CPMC (Carreira and Sminchisescu)

Objects with diverse colors

Example results (good)

Shape sharing (ours)

CPMC (Carreira and Sminchisescu)

Objects confused by surrounding colors

Example results (failure cases)

Shape sharing (ours)

CPMC (Carreira and Sminchisescu)

Shape sharing: highlights

Top-down shape prior in a category-independent way

- Non-parametric transfer of shapes across categories
- Partial shape agreement from multiple exemplars
- Multiple hypothesis approach
- Most impact for heterogeneous objects

Code will be available soon:

http://vision.cs.utexas.edu/projects/shapesharing

