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Image denoising

Many research efforts invested, and results harder and harder to
Improve: reaching saturation?

« What uncertainty is inherent in the problem?
 How further can we improve results?



Denoising Uncertainty

What is the volume of all clean x images that can explain a noisy
image y?
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Denoising Uncertainty
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What is the volume of all clean images x that can explain a noisy
image y?

Multiple clean images within noise level.




Denoising limits- prior work

« Signal processing assumptions (Wiener filter, Gaussian
priors)

* Limits on super resolution- numerical arguments, no
prior [Baker&Kanade 02]

« Sharp bounds for perfectly piecewise constant images
[Korostelev&Tsybakov 93, Polzehl&Spokoiny 03]

* Non-local means- asymptotically optimal for infinitely

large images. No analysis of finite size images.
[Buades,Coll&Morel. 05]

* Natural image denoising limits, but many assumptions

which may not hold in practice and affect conclusions.
[Chatterjee and Milanfar 10]



MMSE denoising bounds

MMSE = [ p(y)V,, = [ p(Y)| P(XT Y)(x, — 2(y))? dxcly

MMSE= conditional variance, achieved by the conditional mean

MMSE with the exact p(x) (and not with heuristics used in
practice), is the optimal possible denoising. By definition.

Using internal image statistics or class specific information
might provide practical benefits, but cannot perform better

than the MMSE. By definition!



MMSE with a finite support
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MMSE 4 = .p(ywd)Vx

wg [Yug

- . (de )j p(xwd | de )(X — M (y)) dXdy

MMSE, best possible result of any algorithm which can
utilize a d=k x k window wy around a pixel of interest

e.g. spatial kernel size in bilateral filter,
patch size in non-parametric methods

Non Local Means: effective support = entire image



Estimating denoising bounds In practice
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MMSE = [ p(y)| p(x| y)(x, — 2(y))* dxdy

Challenge: Compute MMSE without knowing p(x)?

The trick [Levin&Nadler CVPR11]:
We don’t know p(x) but we can sample from it

Evaluate MMSE non parametrically

Sample mea% { i}~ p(X)
PCY [ X)X
A =15 T




MMSE as a function of patch size

patch size

[Levin&Nadler CVPR11]:

For small patches/ large noise, non parametric approach
can accurately estimate the MMSE.
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MMSE as a function of patch size

patch size

How much better can we do by increasing window size?
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Towards denoising bounds

Questions:

* For non-parametric methods:

How does the difficulty in finding nearest neighbors relates
to the potential gain, and how can we make a better usage
of a given database size?

- For any possible metivod:

Computational issues aside, what is the optimal possible
restoration? Can we achieve zero error?



Patch Complexity
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Patch Complexity
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Patch Complexity
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Patch Complexit
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Patch complexity v.s. PSNR gain

Law of diminishing return:
When an increase in patch width requires many more
training samples, the performance gain is smaller.

Smooth regions: .

Easy to increase support, large gain -

r

Textured regions:|__.|
Hard to increase support, small gain

. 2

Adaptive patch size selection in denoising algorithms.
See paper
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Towards denoising bounds

Questions:

- For non-parametric methods:

How does the difficulty in finding nearest neighbors relates

to the potential gain, and how can we make a better usage
of a given database size?

* For any possible method':

Computational issues aside, what is the optimal possible
restoration? Can we achieve zero error?

- What is the convergence rate as a function of patch size?
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The Dead Leaves model [Matheron ’68]

Image = random collection of finite size piece-wise
constant regions

Region intensity = random variable with uniform
distribution

Best possible denoising:
average all observations
within a segment




Optimal denoising in the Dead Leaves model

Scale invariance

» ower law convergence
+ dead leaves P J

C
MMSE, ~MMSE, +—
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Empirical PSNR v.s. window size
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Extrapolating optimal PSNR

MMSE, ~MMSE, +—

Extrapolated bound 28.8 27.3
KSVD 26.0 25.0

BM3D 28.1  26.3
EPLL 28.1  26.3

Future sophisticated denoising algorithms
appear to have modest room for improvement:

~0.6-1.2dB



Summary: inherent uncertainty of denoisiné2

Non-parametric methods: Law of diminishing return

- When increasing patch size requires a significant increase in
training data, the gain is low

- Correlation with new pixels makes it easier to find samples AND
makes them more useful

- Adaptive denoising
For any method:

Optimal denoising as a function of window size
follows a power law convergence
- Scale invariance, dead leaves

- Extrapolation predicts denoising bounds



