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Many research efforts invested, and results harder and harder to 

improve: reaching saturation? 

 

• What uncertainty is inherent in the problem? 

• How further can we improve results? 

 

Image denoising 
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What is the volume of all clean x images that can explain a  noisy 

image y? 

y


Denoising Uncertainty 
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What is the volume of all clean images x that can explain a  noisy 

image y? 

Multiple clean images within noise level.  

y


Denoising Uncertainty 



5 

Denoising limits- prior work 

• Signal processing assumptions (Wiener filter, Gaussian 

priors) 
 

• Limits on super resolution- numerical arguments, no 

prior [Baker&Kanade 02] 
 

• Sharp bounds for perfectly piecewise constant images 
[Korostelev&Tsybakov 93, Polzehl&Spokoiny 03] 
 

• Non-local means- asymptotically optimal for infinitely 

large images. No analysis of finite size images. 
[Buades,Coll&Morel. 05] 
 

• Natural image denoising limits, but many assumptions 

which may not hold in practice and affect conclusions. 
[Chatterjee and Milanfar 10] 
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MMSE denoising bounds 

 

 

MMSE= conditional variance, achieved by the conditional mean 

 

MMSE with the exact p(x) (and not with heuristics used in 

practice), is the optimal possible denoising. By definition.  
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Using internal image statistics or class specific information 

might provide practical benefits, but cannot perform better 

than the MMSE. By definition! 



7 

MMSEd best possible result of any algorithm which can 

utilize a d=k x k window wd around a pixel of interest 

 

 e.g. spatial kernel size in bilateral filter,  

 patch size in non-parametric methods 
 

 Non Local Means:  effective support = entire image 
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Estimating denoising bounds in practice 

 

 

Challenge: Compute MMSE without knowing p(x)? 
 

The trick [Levin&Nadler CVPR11]: 

We don’t know p(x) but we can sample from it  

 Evaluate MMSE non parametrically 
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MMSE as a function of patch size 

[Levin&Nadler CVPR11]: 

For small patches/ large noise, non parametric approach 

can accurately estimate the MMSE. 

 

53

patch size 
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MMSE as a function of patch size 

 

How much better can we do by increasing window size? 

53

patch size 
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Towards denoising bounds 

Questions:  
 

• For non-parametric methods: 
 

  How does the difficulty in finding nearest neighbors relates 

to the potential gain, and how can we make a better usage 

of a given database size? 

 
 

• For any possible method: 
 

  Computational issues aside, what is the optimal possible    

restoration? Can we achieve zero error? 
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Patch Complexity 

? 



13 

Patch Complexity 

? 
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Patch Complexity 

? Empty 

neighbors set 
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Patch Complexity 

? 
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Patch complexity v.s. PSNR gain 

Law of diminishing return:  

When an increase in patch width requires many more 

training samples, the performance gain is smaller. 

 

Smooth regions:  

Easy to increase support, large gain  

 

 

Textured regions:  

Hard to increase support, small gain 

Adaptive patch size selection in denoising algorithms. 

      See paper 
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Towards denoising bounds 

Questions:  
 

• For non-parametric methods: 
 

  How does the difficulty in finding nearest neighbors relates 

to the potential gain, and how can we make a better usage 

of a given database size? 

 
 

• For any possible method: 
 

  Computational issues aside, what is the optimal possible    

restoration? Can we achieve zero error? 

 
- What is the convergence rate as a function of patch size?   
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The Dead Leaves model [Matheron ’68] 

Image = random collection of finite size piece-wise 

constant regions 

Region intensity = random variable with uniform 

distribution  

Best possible denoising: 

average all observations 

within a segment 
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Optimal denoising in the Dead Leaves model 

d

c


 MMSEdMMSE

Scale invariance  

+ dead leaves  

 

power law convergence 
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Empirical PSNR v.s. window size  

Good fit with a power law 
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Poor fit with an exponential curve 

(implied by Markov models) 
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Extrapolating optimal PSNR 

d

c

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Future sophisticated denoising algorithms 

appear to have modest room for improvement: 

~ 0.6-1.2dB 
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Summary: inherent uncertainty of denoising 

Non-parametric methods: Law of diminishing return  

- When increasing patch size requires a significant increase in 

training data, the gain is low 

- Correlation with new pixels makes it easier to find samples AND 

makes them more useful 

- Adaptive denoising 

For any method: 

Optimal denoising as a function of window size  

follows a power law convergence 

- Scale invariance, dead leaves 

- Extrapolation predicts denoising bounds 


