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Detection with the Hough Transform 
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How to enforce consistency of votes? 
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• Voting for viewpoint? 
 



 
• Voting for viewpoint? 
 

votes inconsistent in viewpoint are not accumulated 
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• Voting for type? 

 

 

Smart 
Limousine 

What about color, aspect ratio, etc.? 



Previous Works 

• Voting for other attributes: 
– pose (Seemann’07) 
– viewpoint (Thomas’06,Razavi’10) 
– depth (Sun’10) 
– shapes (Marszalek’08) 
– etc. 

 

• But …. 
– What attribute to choose?  
– How to quantize it? 
– There is also a cost of annotations 
– We cannot use all attributes together  

• HT does not work well on high dimensions (Stephens’91) 

 

 
 



Can we learn the attributes to be 
consistent over? 
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• Every vote is a patch in a training image (Leibe’08) 
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• Every vote is a patch in a training image (Leibe’08) 
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• Every vote is a patch in a training image (Leibe’08) 
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• Every vote is a patch in a training image (Leibe’08) 

• A latent grouping can be represented as a matrix 
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• Every vote is a patch in a training image (Leibe’08) 

• A latent grouping can be represented as a matrix 
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• Every vote is a patch in a training image (Leibe’08) 

• A latent grouping can be represented as a matrix 
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Shared Groups 



• The number of votes is very large (~1 M) 

 

 



• The number of votes is very large (~1 M) 

• Votes from the same training image are all consistent  

  we can pre-group them together (~1000) 
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• The number of votes is very large (~1 M) 

• Votes from the same training image are all consistent  

  we can pre-group them together (~1000) 
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Interesting Special Cases of our Model 



Special Cases of W                    
• Single Row 

– Hough transform with weighted training examples 

    Related to Max Margin HT (Maji’09, Zhang’10) 
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Special Cases of W                    
• Clustering/Annotations 

– Disjoint grouping  with a {0,1} matrix 

– Related to Latent SVMs: (Felzenszwalb et al.’10) 
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Special Cases of W                    
• One training image per group: 

– Related to Exemplar-SVMs (Malisiewicz et al.’11) 
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Special Cases of W                    
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• Uniform weights 

– Equals a single group 

 



Discriminative Learning of W 

 

 

 

 

 

 

 

  

 

  

 

Objective: average precision on the validation set R 

Our objective is non-convex and not even continuous 
 
We do global optimization with a variation of simulated annealing 



Experiments 

• Setup 
– Two datasets: 

• ETHZ cars dataset (Leibe et al.’06) 

• PASCAL VOC 2007 (Everingham et al.’07) 

 

– Pre-train a codebook per category only once 
• Using Hough Forests (Gall and Lempitsky’09) 

• The codebook and the offset stay identical 

 

– Learning W using the validation set 



Learning or Annotation? 

• ~3000 training images, annotated for 14 views 

• Testing on Leuven video sequence (Leibe’07)   
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Learning or Clustering? 



Learning or Clustering? 
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Learning or Clustering? 



Disjoint or Shared Groups? 

Disjoint Groups Shared Groups 



Disjoint or Shared Groups? 

Disjoint Groups Shared Groups 



Overall Results 
PASCAL VOC 2007 
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Contributions 

• Introduced Latent Hough Transform to enforce 
consistency of the votes 

 

• Discriminative learning of the latent space for 
object detection 

 

• State-of-the-art performance for voting based 
methods 

 

 



Visualization of Groups 
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Thank You! 

 


