Latent Hough Transform for Object Detection

Nima Razavi Juergen Gall Pushmeet Kohli Luc Van Gool

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Detection with the Hough Transform

Accumulation of inconsistent votes

Hough Space (position and scale)

How to enforce consistency of votes?

Voting for viewpoint?

• Voting for viewpoint?

votes inconsistent in viewpoint are not accumulated

• Voting for type?

What about color, aspect ratio, etc.?

Previous Works

Voting for other attributes:

- pose (Seemann'07)
- viewpoint (Thomas'06, Razavi'10)
- depth (Sun'10)
- shapes (Marszalek'08)
- etc.

• But

- What attribute to choose?
- How to quantize it?
- There is also a cost of annotations
- We cannot use all attributes together
 - HT does not work well on high dimensions (Stephens'91)

Can we learn the attributes to be consistent over?

Hough Transform

Hough Space

Hough Transform

Latent Hough Transform

• Every vote is a patch in a training image (Leibe'08)

Training Image

• Every vote is a patch in a training image (Leibe'08)

Latent Space

• Every vote is a patch in a training image (Leibe'08)

Latent Space

- Every vote is a patch in a training image (Leibe'08)
- A latent grouping can be represented as a matrix

- Every vote is a patch in a training image (Leibe'08)
- A latent grouping can be represented as a matrix

Disjoint Groups

- Every vote is a patch in a training image (Leibe'08)
- A latent grouping can be represented as a matrix

• The number of votes is very large (~1 M)

- The number of votes is very large (~1 M)
- Votes from the same training image are all consistent
 → we can pre-group them together (~1000)

Training Image 2

- The number of votes is very large (~1 M)
- Votes from the same training image are all consistent

 \rightarrow we can pre-group them together (~1000)

Interesting Special Cases of our Model

- Single Row
 - Hough transform with weighted training examples
 Related to Max Margin HT (Maji'09, Zhang'10)

- Clustering/Annotations
 - Disjoint grouping with a {0,1} matrix
 - Related to Latent SVMs: (Felzenszwalb et al.'10)

- One training image per group:
 - Related to Exemplar-SVMs (Malisiewicz et al.'11)

- Uniform weights
 - Equals a single group

Discriminative Learning of W

$$\hat{W} = \operatorname*{arg\,max}_{W} O(W, R).$$

O(W,R) Objective: average precision on the validation set R

Our objective is non-convex and not even continuous

We do global optimization with a variation of simulated annealing

Experiments

- Setup
 - Two datasets:
 - ETHZ cars dataset (Leibe et al.'06)
 - PASCAL VOC 2007 (Everingham et al.'07)
 - Pre-train a codebook per category only once
 - Using Hough Forests (Gall and Lempitsky'09)
 - The codebook and the offset stay identical
 - Learning W using the validation set

Learning or Annotation?

- ~3000 training images, annotated for 14 views
- Testing on Leuven video sequence (Leibe'07)

Disjoint or Shared Groups?

Disjoint Groups

Shared Groups

Disjoint or Shared Groups?

Disjoint Groups

Shared Groups

Overall Results

PASCAL VOC 2007

Contributions

 Introduced Latent Hough Transform to enforce consistency of the votes

 Discriminative learning of the latent space for object detection

State-of-the-art performance for voting based methods

Visualization of Groups

Ignored Examples

1st Group

2nd Group

Ignored Examples

Ignored Examples

Thank You!