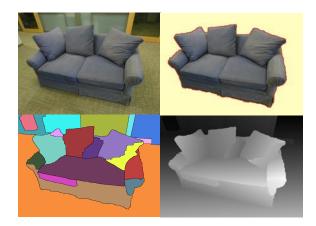
Multiple View Object Cosegmentation using Appearance and Stereo Cues

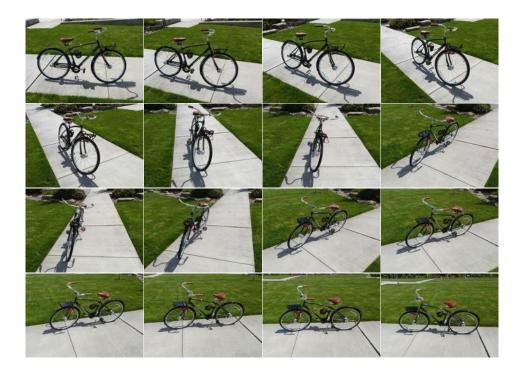
Adarsh Kowdle¹

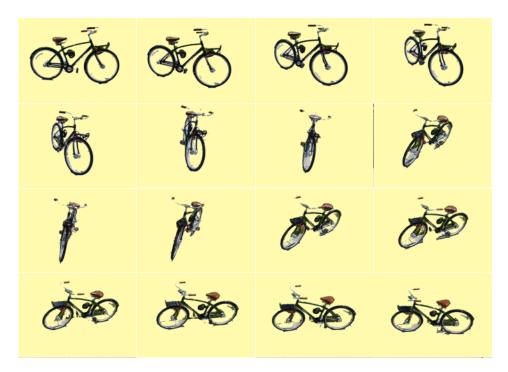
Sudipta Sinha²

Richard Szeliski²



¹Cornell University, ²Microsoft Research





Final result using our approach

Previous Work

Interactive (co)-segmentation

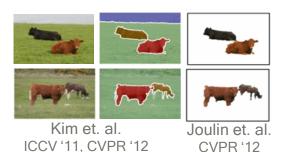
GrabCut - Rother et. al. SIGGRAPH '04

iCoseg - Batra et. al. IJCV '11

iModel - Kowdle et. al. ECCV - RMLE '10

Unsupervised cosegmentation

Mukherjee et. al. Vicente et. al. CVPR '11 CVPR '11



Previous Work

Unsupervised 3D reconstruction and cosegmentation

Campbell et. al. BMVC '07, CVMP '11

Piecewise planar stereo and low-level segmentation

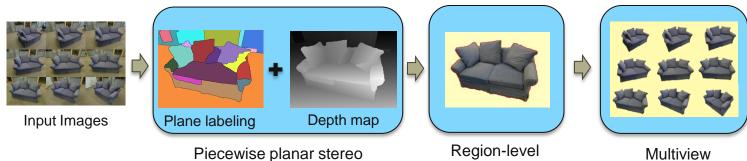
Birchfield et. al. Sinha et. al. ICCV '99 ICCV '09 Bleyer et. al. CVPR '11

Contributions

- Unsupervised object cosegmentation algorithm
 - exploits stereo and appearance cues

- Extend prior work on piecewise planar stereo
 - robust to scenarios where stereo matching is unreliable

Overview



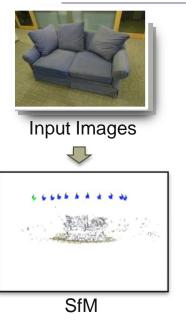
FG/BG labeling

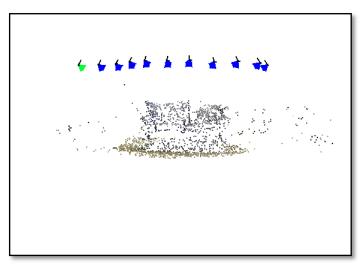
FG/BG labeling

Overview

FG/BG labeling

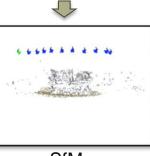
Multiview FG/BG labeling





Structure from Motion (SfM)

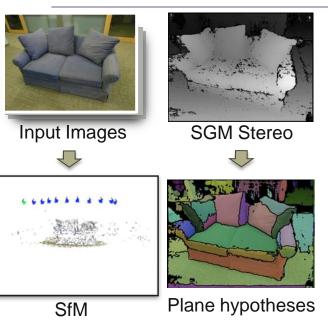
Input Images

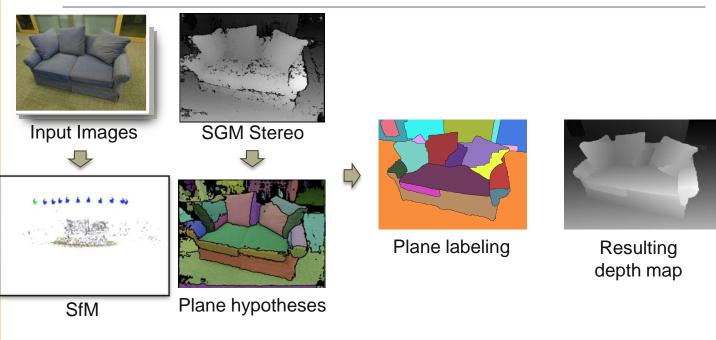


SGM Stereo



Semi-global matching (SGM Stereo) [Hirschmüller 2008]





SGM Stereo Bicycle sequence

Piecewise planar depthmap Only stereo cues Sinha *et. al.* 2009 Our approach Appearance and stereo cues

Pixel level MRF Grid graph over all pixels p

$$l_p \in \Pi = \{\pi_i\}$$

Each plane π_i is parameterized by

- 1. 3D plane equation
- 2. Appearance model (A_i)

$$E(L) = \sum_{p \in P} E_p^A(l_p) + \lambda_G \sum_{p \in P} c_p E_p^G(l_p) + \lambda_S \sum_{(p,q) \in \mathcal{N}} E_{pq}(l_p, l_q)$$

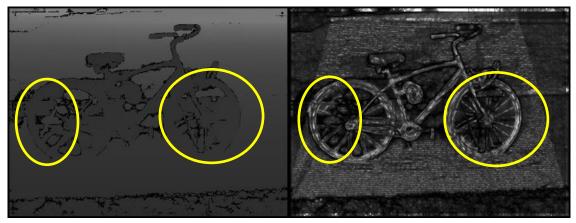
$$l_p \in \Pi = \{\pi_i\}$$

Each plane π_i is parameterized by

- 1. 3D plane equation
- 2. Appearance model (A_i)

 $E(L) = \sum_{p \in P} E_p^A(l_p) + \lambda_G \sum_{p \in P} c_p E_p^G(l_p) + \lambda_S \sum_{(p,q) \in \mathcal{N}} E_{pq}(l_p, l_q)$

Per-pixel confidence



SGM Stereo

Confidence map

$$E(L) = \sum_{p \in P} E_p^A(l_p) + \lambda_G \sum_{p \in P} c_p E_p^G(l_p) + \lambda_S \sum_{(p,q) \in \mathcal{N}} E_{pq}(l_p, l_q)$$

Appearance unary term

Appearance model Lab features (GMM) \mathbf{A}_i

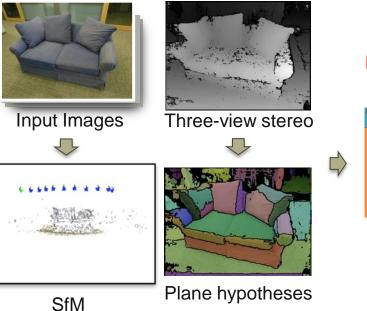
 $E_p^A(l_p = \pi_i) = -log(p(\mathbf{x}|\mathbf{A}_i))$

Per-region color models vs. global color models

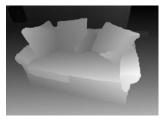
 $E(L) = \sum E_p^A(l_p) + \lambda_G \sum c_p E_p^G(l_p) + \lambda_S \sum E_{pq}(l_p, l_q)$ $p \in P$ $p \in P$ $(p,q) \in \Lambda$

Pairwise term

Contrast sensitive Potts Model



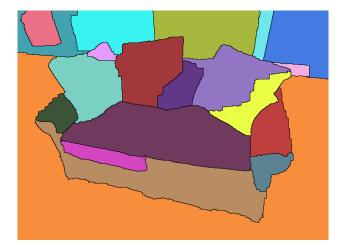
Iterative graph cut with alpha-expansion (Typically 2-3 iterations)

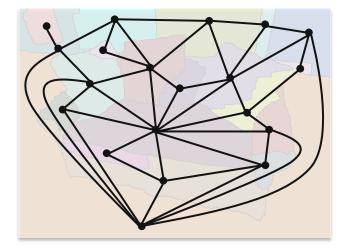


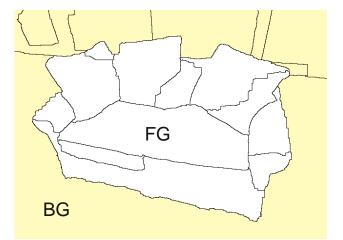
Plane labels

Piecewise planar depth map

Overview



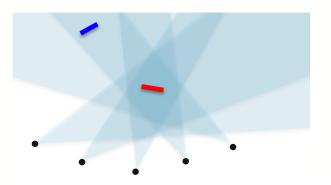


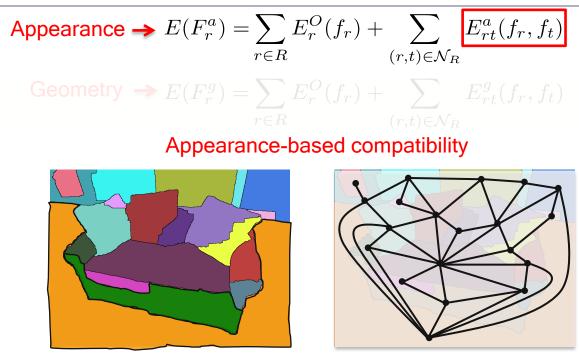


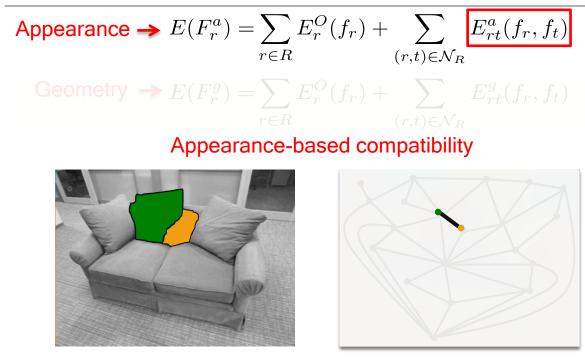
Region level labeling

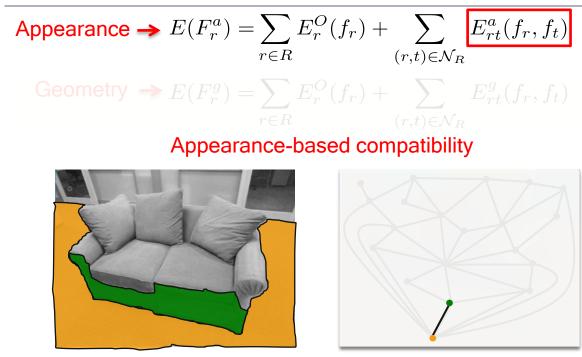
Appearance
$$\Rightarrow E(F_r^a) = \sum_{r \in R} E_r^O(f_r) + \sum_{(r,t) \in \mathcal{N}_R} E_{rt}^a(f_r, f_t)$$

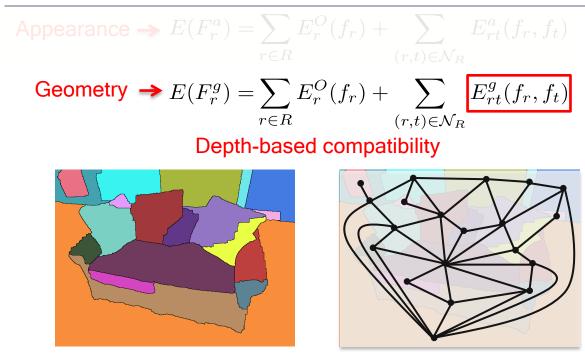
Geometry $\Rightarrow E(F_r^g) = \sum_{r \in R} E_r^O(f_r) + \sum_{(r,t) \in \mathcal{N}_R} E_{rt}^g(f_r, f_t)$
Objectness term

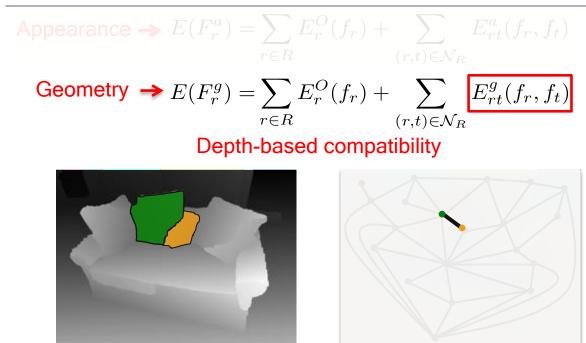


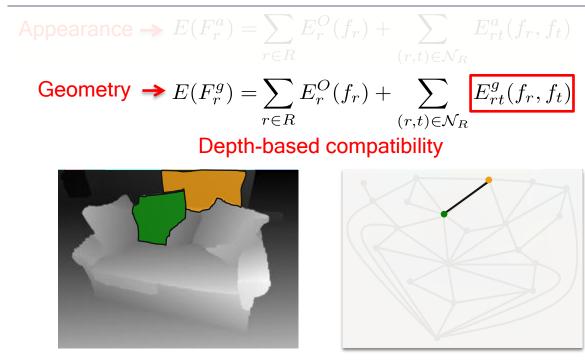










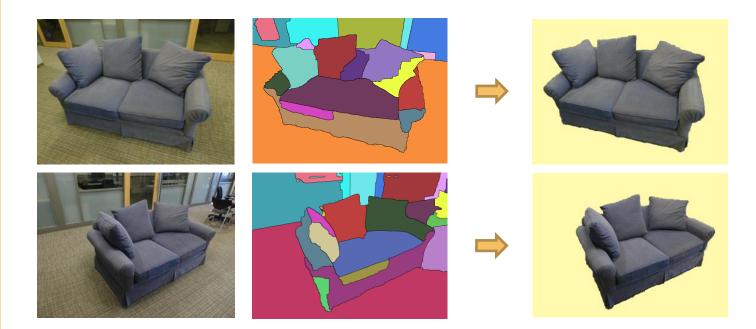


Appearance
$$\rightarrow E(F_r^a) = \sum_{r \in R} E_r^O(f_r) + \sum_{(r,t) \in \mathcal{N}_R} E_{rt}^a(f_r, f_t)$$

Geometry $\rightarrow E(F_r^g) = \sum_{r \in R} E_r^O(f_r) + \sum_{(r,t) \in \mathcal{N}_R} E_{rt}^g(f_r, f_t)$

Graph cut on each energy function independently to obtain MAP labels

Region labeled FG if either solutions label region FG



Overview

FG/BG labeling

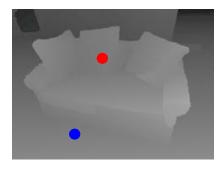
FG/BG labeling

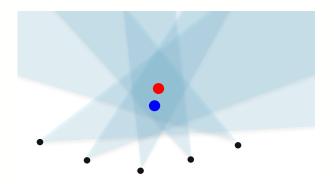
Multiview FG/BG labeling

Pixel level MRF Grid graph over all pixels p

$$E(F) = \sum_{p \in P} E_p^O(f_p) + \sum_{p \in P} E_p^A(f_p) + \sum_{(p,q) \in \mathcal{N}} E_{pq}(f_p, f_q)$$

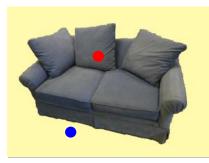
Objectness term



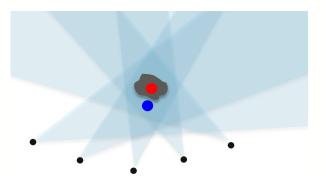


$$E(F) = \sum_{p \in P} E_p^O(f_p) + \sum_{p \in P} E_p^A(f_p) + \sum_{(p,q) \in \mathcal{N}} E_{pq}(f_p, f_q)$$

Objectness term



Region-level FG/BG labeling



 $E(F) = \sum_{p \in P} E_p^O(f_p) + \sum_{p \in P} E_p^A(f_p) + \sum_{(p,q) \in \mathcal{N}} E_{pq}(f_p, f_q)$ Appearance unary term $\mathbf{A} = \{\mathbf{A}_f, \mathbf{A}_b\}$ FG

Region-level FG/BG labeling

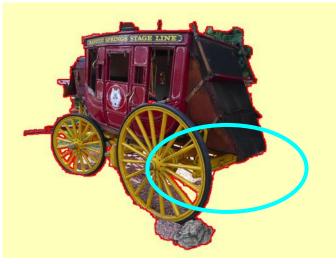
BG

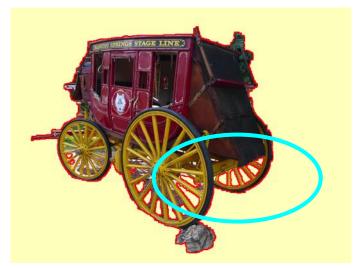
$$E(F) = \sum_{p \in P} E_p^O(f_p) + \sum_{p \in P} E_p^A(f_p) + \sum_{(p,q) \in \mathcal{N}} E_{pq}(f_p, f_q)$$

Pairwise term

Contrast sensitive Potts Model

Graph cut to obtain MAP labels

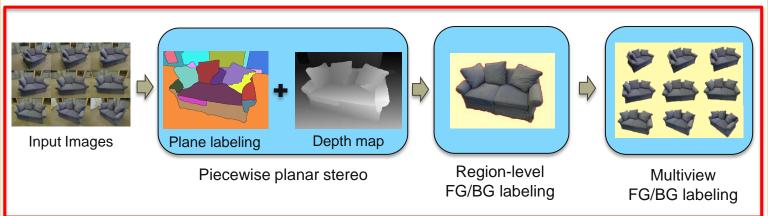




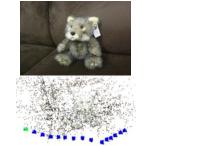
Region-level FG/BG labeling

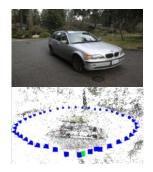
Multiview FG/BG labeling

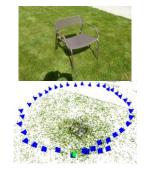
Overview



Datasets







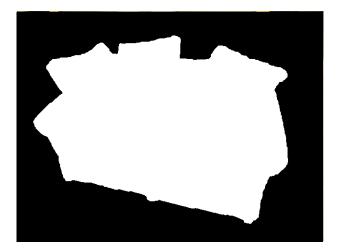
Ground truth: Manually labeled using GrabCut

Ground truth: Manually labeled using GrabCut

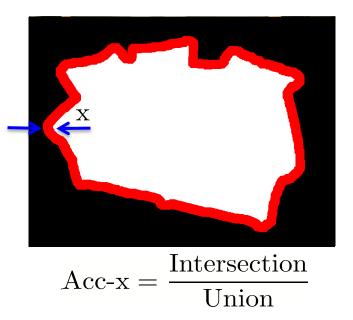
4 minutes

Evaluation metric

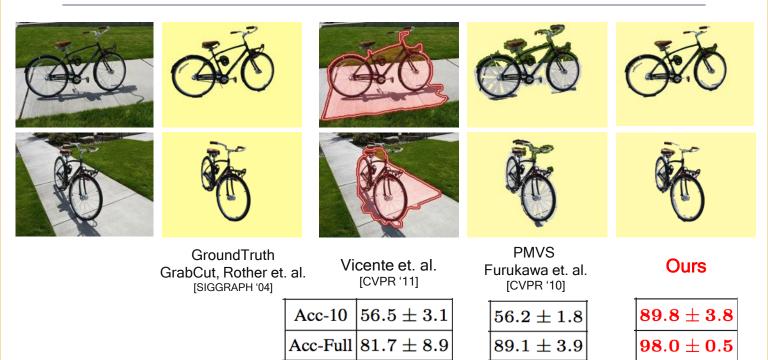
Evaluation metric



Evaluation metric



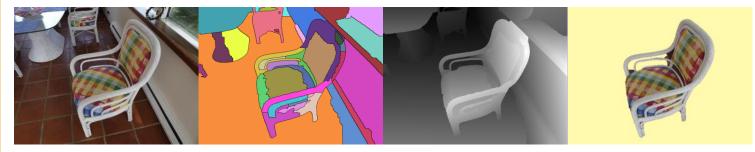
Comparisons

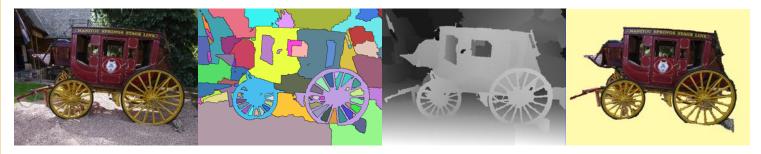


Comparisons

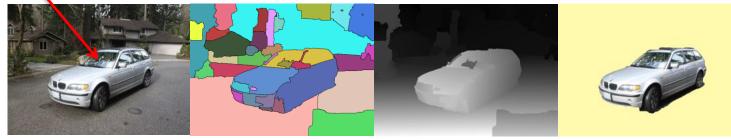
Name		Vicente'11	PMVS'12	Ours
Βικε	Acc-10	68.1 ± 6.7	61.0 ± 3.9	$\textbf{90.0} \pm \textbf{4.9}$
	Acc-Full	88.9 ± 6.3	96.0 ± 1.8	99.1 ± 0.7
BICYCLE	Acc-10	56.5 ± 3.1	56.2 ± 1.8	89.8 ± 3.8
	Acc-Full	81.7 ± 8.9	89.1 ± 3.9	98.0 ± 0.5
CHAIR1	Acc-10	73.3 ± 4.8	72.7 ± 2.1	$\textbf{93.9} \pm \textbf{3.1}$
	Acc-Full	86.9 ± 7.8	96.6 ± 0.4	99.2 ± 0.4
CAR	Acc-10	74.4 ± 5.3	$\overline{59.6 \pm 4.3}$	$\textbf{83.2} \pm \textbf{1.1}$
	Acc-Full	91.8 ± 4.3	91.2 ± 5.5	$\textbf{97.9} \pm \textbf{0.6}$

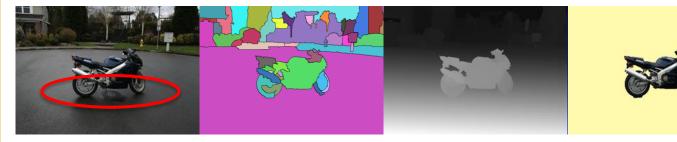
Complicated object structures modeled via piecewise planar proxies



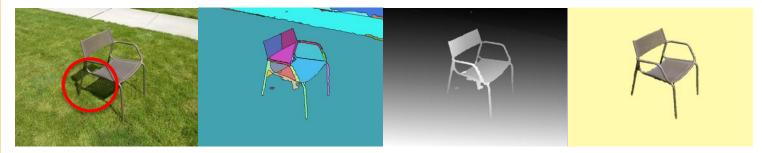


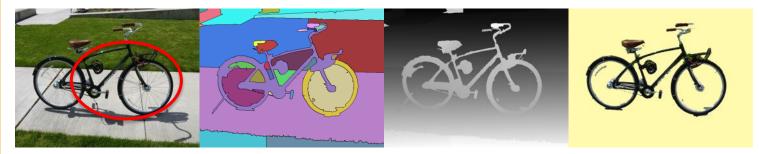
Irregularities such as specular surfaces and overlapping FG/BG appearance models





Complex occlusions and thin structures



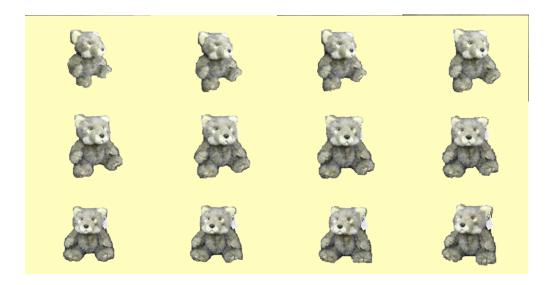


Conclusions

- Unsupervised cosegmentation algorithm that uses appearance and stereo cues to:
 - infer object of interest
 - recover pixel-accurate foreground segmentation in each view
 - recover good quality depth maps

Thank you

Additional Results



Teddy sequence