**.

Photo Sequencing

Tali Basha
Yael Moses
Shai Avidan

ECCV2012

Tel Aviv

The Input

N images taken from different locations at different time steps

Random Order

Our Result

But Who Cares?

- Capturing the highlights of a dynamic event
- Analyzing/Visualizing the dynamic content using still images

Photo Sequencing

Problem definition:

Given \mathbf{N} still images, determine their temporal order:

N! possible permutations...

$$
15!\sim 10^{12}
$$

Photo Sequencing is Not ...

Video Synchronization

Photo Tourism

4D City Reconstruction

Static

Inferring Temporal Order of Images From 3D Structure, Schindler at al., CVPR 2007

Assumptions

Short time interval

Reference

Two images taken roughly from the same position

Static \& Dynamic Features

Detect features \& match to the reference

Static Features

Epipolar Geometry
Fundamental matrices w.r.t.
the reference image

Dynamic Features

Temporal Order
Provide the temporal
information

Dynamic Features

ECCV 12
Photo Sequencing

Algorithm Outline

Order from a Single Feature Set

Spatial order in 3D \rightarrow Temporal order

Order from a Single Feature Set

Spatial order in 2D \rightarrow Temporal order

Order from a Single Feature Set

Map all features to the reference image

Mapping to The Reference

Algorithm Outline

Order Representation

Node 1

Node 2

Node 5

Order Representation

Order Representation

Order Representation

Node 1

Node 2 Node 3

Order Representation

Order Representation

Conflict!

Node 1
\rightarrow

Node 3

Node 4

Rank Aggregation

Input: Possibly conflicting partial orders, $\left\{\sigma_{i}\right\}$
Goal: Compute a "consensus" full order , σ :

$$
\sigma^{*}=\underset{\sigma}{\operatorname{argmin}} \sum_{i}^{N_{\mathrm{D}}} \mathbf{K}\left(\sigma, \sigma_{i}\right)
$$

Rank Aggregation

Rank Aggregation Methods for The Web, Dwork et al. 2001

Markov Chain Approximation

Web Rank	Domain
1	google.com
2	youtube.com
3	facebook.com
4	yahoo.com
5	wikipedia.org
6	twitter.com
7	msn.com
8	live.com
9	blogspot.com
10	amazon.com

Markov Chain

$\mathbf{W}(\mathrm{i}, \mathrm{j})=\operatorname{Pr}\left\{\mathrm{t}\left(\mathrm{I}_{\mathrm{i}}\right)<\mathrm{t}\left(\mathrm{I}_{\mathrm{i}}\right)\right\}$

State 5

State 1

State 3

Markov Chain - Initial State

Random walk: start from a uniform distribution

Markov Chain - Steady State

Ends at the sink

Markov Chain - Initial State

Remove the sink \& repeat

Markov Chain - Steady State

Ends at the sink

Results

Skateboard - Input

9 still images

Note the different viewpoints and camera parameters

Skateboard - Input

Skateboard - Input

Here are the input images in a random order:

Skateboard - Results

The aligned images ordered by our method

$1^{\text {st }}$ Image

The man is skating from left to right

Skateboard - Results

The aligned images ordered by our method

$$
2^{\text {nd }} \text { Image }
$$

The man is skating from left to right

Skateboard - Results

The aligned images ordered by our method

$$
3^{\text {rd }} \text { Image }
$$

The man is skating from left to right

Skateboard - Results

The aligned images ordered by our method

$$
4^{\text {th }} \text { Image }
$$

The man is skating from left to right

Skateboard - Results

The aligned images ordered by our method

 $5^{\text {th }}$ Image

The man is skating from left to right

Skateboard - Results

The man is skating from left to right

Skateboard - Results

The man is skating from left to right

Skateboard - Results

The man is skating from left to right

Skateboard - Results

The man is skating from left to right

Slide - Input

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

Slide - Results

The aligned images ordered by our method

More Results - Beach

More Results - Beach

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Beach Results

The aligned images ordered by our method

Conclusions \& Future Work

- Photo Sequencing - Geometry based solution
- Rank Aggregation

Short Term Future work:

- Matching
- Relaxing the assumptions
- Scalability

Long Term Future work:

- Can still images replace monocular videos?

