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The sliding window technique
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• Transforms a detection problem into a binary classification one

• Applies a binary classifier at every image position and scale
• Similar to sweeping the detection window across the whole image
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HOG∗ and linear SVM ∗Dalal & Triggs ’05

Pedestrian template

Bicycle template

Objects are image positions on the HOG grid: scorew(x) = 〈w, x〉,
where x is the vector of features extracted from the subwindow at the
position of interest of size same as w.

4 of 16



HOG feature planes

=

K fe
ature planes

The HOG features can be seen as organized in planes, containing
distinct features from each grid cell.
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DPM∗ use a lot of filters ∗Felzenszwalb & al. ’08

Typical numbers of filters used on the Pascal challenge:
20 classes × 6 mixtures × 9 parts = 1080 linear filters!
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Challenge

L = 1080 filters
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Standard convolution process

Per image (R)

Per filter (L)

Per image x filter (LR)
...

...

HOG

HOG

HOG

x3 (rgb) x32 (K)

x32 (K)

...

score

x32 (K)

Filter

ImageImage

Per−feature Detection

score
*

+

The computational cost to convolve a HOG image of size M × N with
L filters of size P × Q across K features is:

Cstd = O(KLMNPQ)
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Fourier based convolutions

Per image (R)

Per filter (L)

Per image x filter (LR)
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FT +

x32 (K) x32 (K)

The computational cost to convolve a HOG image of size M × N with
L filters of size P × Q across K features is:

CFFT = O(KMN log MN)︸ ︷︷ ︸
Forward FFTs

+O(KLMN)︸ ︷︷ ︸
Multiplications

+O(KLMN log MN)︸ ︷︷ ︸
Inverse FFTs
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Fourier based convolutions
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Linearity

The computational cost to convolve a HOG image of size M × N with
L filters of size P × Q across K features is:

Copt = O(KMN log MN)︸ ︷︷ ︸
Forward FFTs

+O(KLMN)︸ ︷︷ ︸
Multiplications

+O(��@@KLMN log MN)︸ ︷︷ ︸
Inverse FFTs

≈ O(KLMN)
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Lets plug in typical numbers

• K = 32 (number of HOG features)
• L = 54 (number of filters)
• M × N = 64× 64 (size of the pyramid level)
• P × Q = 6× 6 (size of the filters)

Cstd ≈ 2KLMNPQ ≈ 490 MFlop

CFFT ≈ 3KLMN + 2.5(K + KL)MN log2 MN ≈ 230 MFlop

Copt ≈ 4KLMN + 2.5(K + L)MN log2 MN ≈ 37 MFlop

A gain by a factor 13 compared to the standard process,
and 6 compared to the standard Fourier one!
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Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.

(b)(a) (c)

Memory inefficient

Pyramid
levels

Filter
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Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.

(b)(a) (c)

Memory inefficient

(b)(a) (c)

Computationally inefficient

(b)(a) (c)

Best of both worlds
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Cache violations
Naive strategy
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Results

Table : Pascal VOC 2007 challenge convolution time and speedup

aero bike bird boat bottle bus car cat chair cow table
V4 (ms) 409 437 403 414 366 439 352 432 417 429 450
Ours (ms) 55 56 53 56 57 56 54 56 56 57 57
Speedup (x) 7.4 7.8 7.6 7.4 6.4 7.9 6.5 7.7 7.5 7.5 8.0

dog horse mbike person plant sheep sofa train tv mean
V4 (ms) 445 439 429 379 358 351 425 458 433 413
Ours (ms) 57 59 57 54 54 55 57 58 55 56
Speedup (x) 7.8 7.5 7.6 7.0 6.6 6.4 7.4 7.9 7.9 7.4

• Error rate: identical to the baseline (32.3% AP)
• Numerical accuracy: better than the baseline (1.8 · 10−8 vs.

2.4 · 10−8 MAE)
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Conclusion

• Part-based models obtain state-of-the-art performance at the
price of a huge number of convolutions

• The FT is linear, enabling one to do the addition of the
convolutions across feature planes in Fourier space

• The computational cost becomes invariant to the filters’
sizes, resulting in a big speedup (×7.4 in our experiments,
even more for bigger filters)
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Exact Acceleration of Linear Object Detectors
Charles Dubout & François Fleuret Idiap Research Institute

Thank you for your attention!

Questions?

Contact me at charles.dubout@idiap.ch
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