Exact Acceleration of Linear Object Detectors

Charles Dubout
François Fleuret
Idiap Research Institute
9 October 2012

Plan

Architecture of a modern linear object detector
The sliding window technique
HOG and linear SVM
HOG feature planes
Deformable part-based models (DPM)
DPM use a lot of filters
Challenge
Our contribution
Standard and Fourier convolution processes
Patchworks of pyramid scales
Cache violations
Results

The sliding window technique

- Transforms a detection problem into a binary classification one

The sliding window technique

- Transforms a detection problem into a binary classification one
- Applies a binary classifier at every image position and scale

The sliding window technique

- Transforms a detection problem into a binary classification one
- Applies a binary classifier at every image position and scale
- Similar to sweeping the detection window across the whole image

HOG* and linear SVM

Pedestrian template

Bicycle template

Objects are image positions on the HOG grid: $\operatorname{score}_{\mathbf{w}}(\mathbf{x})=\langle\mathbf{w}, \mathbf{x}\rangle$, where \mathbf{x} is the vector of features extracted from the subwindow at the position of interest of size same as \mathbf{w}.

HOG feature planes

The HOG features can be seen as organized in planes, containing distinct features from each grid cell.

DPM* use a lot of filters

DPM* use a lot of filters
*Felzenszwalb \& al. '08

Typical numbers of filters used on the Pascal challenge: 20 classes $\times 6$ mixtures $\times 9$ parts $=1080$ linear filters!

Challenge

Challenge

Standard convolution process

Standard convolution process

The computational cost to convolve a HOG image of size $M \times N$ with L filters of size $P \times Q$ across K features is:

$$
C_{\mathrm{std}}=\mathcal{O}(K L M N P Q)
$$

Fourier based convolutions

The computational cost to convolve a HOG image of size $M \times N$ with L filters of size $P \times Q$ across K features is:

$$
C_{\text {FFT }}=\underbrace{\mathcal{O}(K M N \log M N)}_{\text {Forward FFTs }}+\underbrace{\mathcal{O}(K L M N)}_{\text {Multiplications }}+\underbrace{\mathcal{O}(K L M N \log M N)}_{\text {Inverse FFTs }}
$$

Fourier based convolutions

The computational cost to convolve a HOG image of size $M \times N$ with L filters of size $P \times Q$ across K features is:

$$
\begin{aligned}
C_{\text {opt }} & =\underbrace{\mathcal{O}(K M N \log M N)}_{\text {Forward FFTs }}+\underbrace{\mathcal{O}(K L M N)}_{\text {Multiplications }}+\underbrace{\mathcal{O}(K L M N \log M N)}_{\text {Inverse FFTs }} \\
& \approx \mathcal{O}(K L M N)
\end{aligned}
$$

Lets plug in typical numbers

- $K=32$ (number of HOG features)
- $L=54$ (number of filters)
- $M \times N=64 \times 64$ (size of the pyramid level)
- $P \times Q=6 \times 6$ (size of the filters)

Lets plug in typical numbers

- $K=32$ (number of HOG features)
- $L=54$ (number of filters)
- $M \times N=64 \times 64$ (size of the pyramid level)
- $P \times Q=6 \times 6$ (size of the filters)

$$
\begin{aligned}
C_{\text {std }} & \approx 2 K L M N P Q \\
C_{\text {FFT }} & \approx 3 K L M N+2.5(K+K L) M N \log _{2} M N \approx 230 \text { MFlop } \\
C_{\mathrm{opt}} & \approx 4 K L M N+2.5(K+L) M N \log _{2} M N \approx 37 \text { MFlop }
\end{aligned}
$$

A gain by a factor 13 compared to the standard process, and 6 compared to the standard Fourier one!

Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.

Memory inefficient

Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.

Memory inefficient
Computationally inefficient

Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.

Computationally inefficient Best of both worlds

Cache violations

Naive strategy

L filters

Cache violations

Naive strategy

L filters

Read 2 into cache

Cache violations

Naive strategy

L filters

Read 2 into cache \Rightarrow compute 1 .

Cache violations

Naive strategy

Read 2 into cache \Rightarrow compute 1 .

Cache violations

Naive strategy

Read 2 into cache \Rightarrow compute 1 .

Cache violations

Naive strategy

Read $2 L R$ into cache \Rightarrow compute $L R$.

Cache violations

Fragment strategy

Cache violations

Fragment strategy

Read $(L+R) \frac{\epsilon}{L+R}=\epsilon$ into cache

Cache violations

Fragment strategy

Read $(L+R) \frac{\epsilon}{L+R}=\epsilon$ into cache \Rightarrow compute $L R \frac{\epsilon}{L+R}$.

Cache violations

Fragment strategy

L filters

Read $(L+R) \frac{\epsilon}{L+R}=\epsilon$ into cache \Rightarrow compute $L R \frac{\epsilon}{L+R}$.

Cache violations

Fragment strategy

L filters

Read $(L+R) \frac{\epsilon}{L+R}=\epsilon$ into cache \Rightarrow compute $L R \frac{\epsilon}{L+R}$.

Cache violations

Fragment strategy

L filters

Read $L+R$ into cache \Rightarrow compute $L R$.

Results

Table : Pascal VOC 2007 challenge convolution time and speedup

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table
V4 (ms)	409	437	403	414	366	439	352	432	417	429	450
Ours (ms)	55	56	53	56	57	56	54	56	56	57	57
Speedup (x)	7.4	7.8	7.6	7.4	6.4	7.9	6.5	7.7	7.5	7.5	8.0

	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
V4 (ms)	445	439	429	379	358	351	425	458	433	$\mathbf{4 1 3}$
Ours (ms)	57	59	57	54	54	55	57	58	55	$\mathbf{5 6}$
Speedup (x)	7.8	7.5	7.6	7.0	6.6	6.4	7.4	7.9	7.9	$\mathbf{7 . 4}$

Results

Table : Pascal VOC 2007 challenge convolution time and speedup

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table
V4 (ms)	409	437	403	414	366	439	352	432	417	429	450
Ours (ms)	55	56	53	56	57	56	54	56	56	57	57
Speedup (x)	7.4	7.8	7.6	7.4	6.4	7.9	6.5	7.7	7.5	7.5	8.0

	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
V4 (ms)	445	439	429	379	358	351	425	458	433	$\mathbf{4 1 3}$
Ours (ms)	57	59	57	54	54	55	57	58	55	$\mathbf{5 6}$
Speedup (x)	7.8	7.5	7.6	7.0	6.6	6.4	7.4	7.9	7.9	$\mathbf{7 . 4}$

- Error rate: identical to the baseline (32.3\% AP)

Results

Table : Pascal VOC 2007 challenge convolution time and speedup

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table
$\mathbf{V 4}$ (ms)	409	437	403	414	366	439	352	432	417	429	450
Ours (ms)	55	56	53	56	57	56	54	56	56	57	57
Speedup (x)	7.4	7.8	7.6	7.4	6.4	7.9	6.5	7.7	7.5	7.5	8.0

	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
V4 (ms)	445	439	429	379	358	351	425	458	433	$\mathbf{4 1 3}$
Ours (ms)	57	59	57	54	54	55	57	58	55	$\mathbf{5 6}$
Speedup (x)	7.8	7.5	7.6	7.0	6.6	6.4	7.4	7.9	7.9	$\mathbf{7 . 4}$

- Error rate: identical to the baseline (32.3\% AP)
- Numerical accuracy: better than the baseline (1.8 $\cdot 10^{-8}$ vs. $2.4 \cdot 10^{-8}$ MAE)

Conclusion

- Part-based models obtain state-of-the-art performance at the price of a huge number of convolutions
- The FT is linear, enabling one to do the addition of the convolutions across feature planes in Fourier space
- The computational cost becomes invariant to the filters' sizes, resulting in a big speedup ($\times 7.4$ in our experiments, even more for bigger filters)

Exact Acceleration of Linear Object Detectors

Thank you for your attention!

Questions?

Contact me at charles.dubout@idiap.ch

