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Motivations

Real world networks (i.e. webgraphs, online social networks)
are huge

Even though there are distributed platforms for large scale
graph processing still graph compression is beneficial:

Processing larger portion of graph per computer
Reducing the communication cost

Ideally we like to be able to run different types of query on the
compressed graph
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Motivations

“Data mining = Compression” C. Faloutsos
[Data mining for fun, Innovation Award talk, KDD10]
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Existing Approaches: Web graphs

Boldi and Vigna [WWW04]

Locality of webgraphs: A large percentage of links are
intra-domain

Sort by URL to improve locality of links

Sort the list of out-links for each node

Use ζ codes to encode the gaps between out-links

This compress the webgraphs down to almost 2 bits per edge
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Existing approaches: Friendship networks

Chierichetti et. al. [KDD09]

There is no natural ordering of vertices for friendship networks

Instead of sorting by URL in the previous approach, use
shingle ordering

Shingle ordering tends to place nodes with similar out-links list
close to each other (similar in the sense of Jaccard Coefficient)

The compression rate is not nearly as good as webgraphs
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Some Observations

Observation: The optimality of adjacency matrix representation

Consider the class of random graph on n vertices where each
possible edge is included in the graph with probability half

Based on information theoretical lower bound, Any
compression scheme on expectation uses at least n2 bits

Provably for this class of graphs adjacency matrix is the
optimal schema

Message: Roughly speaking for dense random graph
adjacency matrix is the best option
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Some Observations

Observation: The optimality of adjacency list representation:

Consider the class of random graph on n vertexes, where:

Each vertex has only one outgoing edge
The destination of that edge is picked uniformly at random

For this class of graphs any compression scheme on
expectation uses at least n log n bits

In this case provably adjacency list is the optimal schema

Message: Roughly speaking for sparse random graph
adjacency list is the best option
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The Idea

It is well known that social networks are locally dense and
globally sparse

Question: Is it possible to combine the adjacency matrix and
adjacency list effectively to get a compression schema?

General Idea: For “local” edges use adjacency matrix and for
“global” connections use pointers

9 / 23



Background Our Framework Formalization Experiments

The Idea

Let’s consider a very simple case

Assume a linear arrangement of nodes is given

Notice that all the edges are “local” (i.e. every edge is
connecting two nodes next to each other)

v1 v5v4v3v2
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The Idea

Now we consider a more sophisticated case

In this case there is no arrangement of vertices such that
every edge is “local”

Relaxation: A node can appear more than once

v1 v5v4v3v2
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Representation Schema

0 1 0 1 0 110 1 1 1 0 1 1 0 0

Representation schema is an array in which each cell consists
of a pointer and two bits

The index of the first appearance of a node is its ID

We can extent the idea by using 2k bits for each position to
encode the outlinks that are at most k positions away
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S-distance

Given a sequence S of nodes of the graph, the S-distance

between u and v, is the minimum norm-1 distance among all

pairs of appearances of u and v

v2 v1v3v5v4 v4v3v2

 dist = 2 

 dist = 1  dist = 3 

S-dist(v2,v3) = 1
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MPk linearization

An MPk linearization of graph G is a sequence S of vertices,
such that for all (u, v) ∈ E (G ), S-dist(u, v) ≤ k

v1 v5v4v3v2
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MPk linearization

An MPk linearization of graph G is a sequence S of vertices,
such that for all (u, v) ∈ E (G ), S-dist(u, v) ≤ k

v1 v5v4v3v2

v2 v1v3v5v4 v4v3v2

MP1 Linearization

v1 v5v4v3v2

MP2 Linearization

Given MPk linearization L of G , one can encode G using
(2k + ⌈log |L|⌉)× |L| bits, where |L| is the length of L
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Finding optimal MP1 linearization

Minimum MP1 linearization

1 Start from a node with odd degree, if there is no such a node,
start from an arbitrary node with nonzero degree

2 Choose an edge whose deletion does not disconnect the
graph, unless there is no other choice

3 Move across the edge and remove it

4 Keep removing edges until getting to a node that does not
have any remaining edge to choose

5 If the graph is not empty go to step 1
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This algorithm partitions the edges to exactly Nodd/2
edge-disjoint paths,where Nodd is the number of vertices with
odd degree (assuming Nodd > 0)

The length of an optimal MP1 linearization is |E |+ Nodd/2
(Nodd > 0)

It can be implemented in O(|E |) time
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Compression Rate: Upper Bound

Using MP1 linearization to encode a graph G the bits/edge rate is
at most

(1 +
1

d̄
)
(

⌈log2(|V (G )|) + log2(d̄ + 1)⌉+ 1
)

while the in-neighbor and out-neighbor query processing time is

O
(

∑

u∈Nv

deg(u) log |V (G )|
)

The trivial encoding of the graph that answers both in-neighbor
and out-neighbor queries uses 2 log |V | bits/edge
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Hardness Results

How hard is it to compute an optimal MP2 linearization?

We don’t know, pretty hard I guess!

Minimum MPk linearization when k is part of the input is a
generalization of Min-Bandwidth problem and therefore it is
NP-hard

Min-Bandwidth problem: Find an arrangement of vertices of
the graph that minimize the maximum stretch of an edge
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MPk linearization: Heuristic

A greedy heuristic to compute MPk linearization:
1 Start with a random node and add it to list
2 Find the node that has the most number of edges to the last k

nodes in the list
3 Remove the edges between this node and the last k nodes in

the list
4 Add the node to the list
5 Repeat until no edge is left

The graph gets sparser and sparser while we are removing the
edges

We use a threshold to reduce the value of k in the process of
linearization
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Experimental Results

Query processing time (ns)
Dataset statistics Adj query Neigh. query

|V | |E | FCT Comp. Adj. list Comp. Adj. list

CN 12006 236978 0.659 520 400 1849 19

PCN 34546 421534 0.145 1300 480 2745 28

P2PN 26518 65369 0.004 500 320 1488 50

LJN 4845609 68475391 0.288 3050 1130 9734 49
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Comparison

Comparison: The compression rate of the previous schema
[KDD09] on LiveJournal dataset is 14.38 while it can only answer
out-neighbor queries, our compression rate is 13.91 while our
method can answer both in-neighbor and out-neighbor queries
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Conclusions

We introduce a novel framework for representing graphs

In its simplest settings, our framework comes with an upper
bound on bits/edge rate

Our method can efficiently answer more types of query and
retain the comparable compression rate than the
state-of-the-art methods

Our framework reduces the problem of compressing a graph to
an intuitive combinatorial problem
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Future works

Finding smarter algorithms for linearizing a graph

Using other compression techniques on top of our framework

Hardness result for MPk linearization when k is fixed
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