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Motivations

@ Real world networks (i.e. webgraphs, online social networks)
are huge

@ Even though there are distributed platforms for large scale
graph processing still graph compression is beneficial:

@ Processing larger portion of graph per computer
@ Reducing the communication cost

o |deally we like to be able to run different types of query on the
compressed graph
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Motivations

“Data mining = Compression” C. Faloutsos
[Data mining for fun, Innovation Award talk, KDD10]
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Existing Approaches: Web graphs

Boldi and Vigna [WWW04]
@ Locality of webgraphs: A large percentage of links are
intra-domain
Sort by URL to improve locality of links
Sort the list of out-links for each node

Use ¢ codes to encode the gaps between out-links

e ¢ ¢ ¢

This compress the webgraphs down to almost 2 bits per edge
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Existing approaches: Friendship networks

Chierichetti et. al. [KDD09]

@ There is no natural ordering of vertices for friendship networks

@ Instead of sorting by URL in the previous approach, use
shingle ordering

@ Shingle ordering tends to place nodes with similar out-links list
close to each other (similar in the sense of Jaccard Coefficient)

@ The compression rate is not nearly as good as webgraphs
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Some Observations

Observation: The optimality of adjacency matrix representation
@ Consider the class of random graph on n vertices where each
possible edge is included in the graph with probability half
@ Based on information theoretical lower bound, Any
compression scheme on expectation uses at least n? bits
@ Provably for this class of graphs adjacency matrix is the
optimal schema

@ Message: Roughly speaking for dense random graph
adjacency matrix is the best option
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Some Observations

Observation: The optimality of adjacency list representation:

@ Consider the class of random graph on n vertexes, where:

@ Each vertex has only one outgoing edge
o The destination of that edge is picked uniformly at random

@ For this class of graphs any compression scheme on
expectation uses at least nlog n bits

@ In this case provably adjacency list is the optimal schema

@ Message: Roughly speaking for sparse random graph
adjacency list is the best option
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The Idea

@ It is well known that social networks are locally dense and
globally sparse

@ Question: Is it possible to combine the adjacency matrix and
adjacency list effectively to get a compression schema?

@ General Idea: For “local” edges use adjacency matrix and for
“global” connections use pointers
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The Idea

@ Let's consider a very simple case
@ Assume a linear arrangement of nodes is given

@ Notice that all the edges are “local” (i.e. every edge is
connecting two nodes next to each other)
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The Idea

@ Now we consider a more sophisticated case

@ In this case there is no arrangement of vertices such that
every edge is “local”

@ Relaxation: A node can appear more than once

11/23
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Representation Schema

ol o o o o oh ol
T T =f

@ Representation schema is an array in which each cell consists
of a pointer and two bits

@ The index of the first appearance of a node is its ID

@ We can extent the idea by using 2k bits for each position to
encode the outlinks that are at most k positions away

12 /23
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S-distance

@ Given a sequence S of nodes of the graph, the S-distance
between u and v, is the minimum norm-1 distance among all
pairs of appearances of u and v

P009 090G

S-dist(va,v3) = 1
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MP, linearization

@ An MPy linearization of graph G is a sequence S of vertices,
such that for all (u,v) € E(G), S-dist(u,v) < k

0%0‘@
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MP, linearization

@ An MPy linearization of graph G is a sequence S of vertices,
such that for all (u,v) € E(G), S-dist(u,v) < k

MP; Linearization
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MP;, Linearization
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@ Given MPy linearization L of G, one can encode G using
(2k + [log|L|]) x |L| bits, where |L| is the length of L

14 /23
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Finding optimal MP; linearization

Minimum MPq linearization
@ Start from a node with odd degree, if there is no such a node,
start from an arbitrary node with nonzero degree

© Choose an edge whose deletion does not disconnect the
graph, unless there is no other choice

© Move across the edge and remove it

© Keep removing edges until getting to a node that does not
have any remaining edge to choose

@ If the graph is not empty go to step 1

15/23
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@ This algorithm partitions the edges to exactly Nygq/2
edge-disjoint paths,where N,4y is the number of vertices with
odd degree (assuming Nogy > 0)

@ The length of an optimal MP; linearization is |E| + Nogq/2
(Nodd > 0)
@ It can be implemented in O(|E|) time

16 /23
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Compression Rate: Upper Bound

Using MP; linearization to encode a graph G the bits/edge rate is
at most

(1 +2)(Toga(IV(G)]) + loga(@ + 1)] + 1)

while the in-neighbor and out-neighbor query processing time is
( Z deg(u)log | V/( )|)
ueN,

The trivial encoding of the graph that answers both in-neighbor
and out-neighbor queries uses 2 log | V| bits/edge
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Hardness Results

@ How hard is it to compute an optimal MP5 linearization?
@ We don't know, pretty hard | guess!

@ Minimum MPy linearization when k is part of the input is a
generalization of Min-Bandwidth problem and therefore it is
NP-hard

@ Min-Bandwidth problem: Find an arrangement of vertices of
the graph that minimize the maximum stretch of an edge
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MP, linearization: Heuristic

@ A greedy heuristic to compute MPy linearization:

@ Start with a random node and add it to list

@ Find the node that has the most number of edges to the last k
nodes in the list

© Remove the edges between this node and the last k nodes in
the list

@ Add the node to the list

© Repeat until no edge is left

@ The graph gets sparser and sparser while we are removing the
edges

@ We use a threshold to reduce the value of k in the process of
linearization

19/23



Experimental Results

Query processing time (ns)
Dataset statistics Adj query Neigh. query
V| |E| FCT | Comp. | Adj. list | Comp. | Adj. list
CN | 12006 236978 0.659 | 520 400 1849 19
PCN | 34546 421534 0.145 | 1300 | 480 2745 | 28
P2PN | 26518 65369 0.004 | 500 320 1488 | 50
LJN | 4845609 | 68475391 | 0.288 | 3050 1130 9734 | 49
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Comparison

Comparison: The compression rate of the previous schema
[KDDQ9] on LiveJournal dataset is 14.38 while it can only answer
out-neighbor queries, our compression rate is 13.91 while our
method can answer both in-neighbor and out-neighbor queries
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Conclusions

We introduce a novel framework for representing graphs

In its simplest settings, our framework comes with an upper
bound on bits/edge rate

Our method can efficiently answer more types of query and
retain the comparable compression rate than the
state-of-the-art methods

Our framework reduces the problem of compressing a graph to
an intuitive combinatorial problem
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Future works

@ Finding smarter algorithms for linearizing a graph
@ Using other compression techniques on top of our framework

@ Hardness result for MP linearization when k is fixed
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