Backgro	

Our Framewor

Formalization

1/23

Neighbor Query Friendly Compression of Social Networks

Hossein Maserrat ¹ Jian Pei ¹

¹School of Computing Science Simon Fraser University {hmaserra, jpei}@cs.sfu.ca

KDD 2010

Background 0000	Our Framework	Formalization	Experiments 00000
Outline			

- Motivations
- Existing Approaches

Our Framework

- Some Observations
- The Idea

3 Formalization

- Concepts
- Theoretical Results

4 Experiments

- Heuristic
- Results

Background	Our Framework	Formalization	Experiments
000			
Motivations			

- Real world networks (i.e. webgraphs, online social networks) are huge
- Even though there are distributed platforms for large scale graph processing still graph compression is beneficial:
 - Processing larger portion of graph per computer
 - Reducing the communication cost
- Ideally we like to be able to run different types of query on the compressed graph

Background
0000

Our Framework

Formalization

Experiments 00000

4/23

Motivations

"Data mining = Compression" C. Faloutsos [Data mining for fun, Innovation Award talk, KDD10]

Background	Our Framework	Formalization	Experiments
Existing Approac	hes: Web graphs		

Boldi and Vigna [WWW04]

- Locality of webgraphs: A large percentage of links are intra-domain
- Sort by URL to improve locality of links
- Sort the list of out-links for each node
- Use ζ codes to encode the gaps between out-links
- This compress the webgraphs down to almost 2 bits per edge

Background	Our Framework	Formalization	Experiments
0000	000000	000000	00000
Existing approac	hes: Friendship net	works	

Chierichetti et. al. [KDD09]

- There is no natural ordering of vertices for friendship networks
- Instead of sorting by URL in the previous approach, use shingle ordering
- Shingle ordering tends to place nodes with similar out-links list close to each other (similar in the sense of Jaccard Coefficient)
- The compression rate is not nearly as good as webgraphs

Some Obse	rvations		
0000	000000	000000	00000
Background	Our Framework	Formalization	Experiments

Observation: The optimality of adjacency matrix representation

- Consider the class of random graph on *n* vertices where each possible edge is included in the graph with probability half
- Based on information theoretical lower bound, Any compression scheme on expectation uses at least n^2 bits
- Provably for this class of graphs adjacency matrix is the optimal schema
- Message: Roughly speaking for dense random graph adjacency matrix is the best option

Some Obse	wations		
	00000		
Background	Our Framework	Formalization	Experiments

Observation: The optimality of adjacency list representation:

- Consider the class of random graph on *n* vertexes, where:
 - Each vertex has only one outgoing edge
 - The destination of that edge is picked uniformly at random
- For this class of graphs any compression scheme on expectation uses at least $n \log n$ bits
- In this case provably adjacency list is the optimal schema
- Message: Roughly speaking for sparse random graph adjacency list is the best option

Background	Our Framework	Formalization	Experiments
	00000		
The Idea			

- It is well known that social networks are locally dense and globally sparse
- Question: Is it possible to combine the adjacency matrix and adjacency list effectively to get a compression schema?
- General Idea: For "local" edges use adjacency matrix and for "global" connections use pointers

Background	Our Framework	Formalization	Experiments
0000	○○0●00	000000	00000
The Idea			

- Let's consider a very simple case
- Assume a linear arrangement of nodes is given
- Notice that all the edges are "local" (i.e. every edge is connecting two nodes next to each other)

Background 0000	Our Framework	Formalization	Experiments 00000
The Idea			

- Let's consider a very simple case
- Assume a linear arrangement of nodes is given
- Notice that all the edges are "local" (i.e. every edge is connecting two nodes next to each other)

Background	Our Framework	Formalization	Experiments
	000000		
The Idea			

- Now we consider a more sophisticated case
- In this case there is no arrangement of vertices such that every edge is "local"
- Relaxation: A node can appear more than once

Background	Our Framework	Formalization	Experiments
	000000		

- Now we consider a more sophisticated case
- In this case there is no arrangement of vertices such that every edge is "local"
- Relaxation: A node can appear more than once

Background	Our Framework	Formalization	Experiments
	000000		
The Idea			

- Now we consider a more sophisticated case
- In this case there is no arrangement of vertices such that every edge is "local"
- Relaxation: A node can appear more than once

Background	Our Framework	Formalization	Experiments
0000	○○○○○●	000000	00000
Representation S	Schema		

- Representation schema is an array in which each cell consists of a pointer and two bits
- The index of the first appearance of a node is its ID
- We can extent the idea by using 2k bits for each position to encode the outlinks that are at most k positions away

Background	Our Framework	Formalization	Experiments
0000	000000	●00000	00000
S-distance			

• Given a sequence S of nodes of the graph, the S-distance between u and v, is the minimum norm-1 distance among all pairs of appearances of u and v

Background	Our Framework	Formalization	Experiments
0000	000000	o●oooo	00000
MP _k linearization	n		

• An MP_k linearization of graph G is a sequence S of vertices, such that for all $(u, v) \in E(G)$, S-dist $(u, v) \leq k$

Background	Our Framework	Formalization	Experiments
		00000	
MP_k linearization	n		

An MP_k linearization of graph G is a sequence S of vertices, such that for all (u, v) ∈ E(G), S-dist(u, v) ≤ k

Background	Our Framework	Formalization	Experiments
		00000	
MP_k linearization	n		

An MP_k linearization of graph G is a sequence S of vertices, such that for all (u, v) ∈ E(G), S-dist(u, v) ≤ k

 (v_1) (v_2) (v_3) (v_4) (v_5)

イロン イヨン イヨン イヨン

3

14/23

Background	Our Framework	Formalization	Experiments
0000	000000	o●oooo	00000
MP _k linearization	n		

An MP_k linearization of graph G is a sequence S of vertices, such that for all (u, v) ∈ E(G), S-dist(u, v) ≤ k

Given MP_k linearization L of G, one can encode G using (2k + ⌈log|L|⌉) × |L| bits, where |L| is the length of L

3

Background	Our Framework	Formalization	Experiments
0000	000000		00000
Finding optimal	MP ₁ linearization		

Minimum MP₁ linearization

- Start from a node with odd degree, if there is no such a node, start from an arbitrary node with nonzero degree
- Choose an edge whose deletion does not disconnect the graph, unless there is no other choice
- Move across the edge and remove it
- Keep removing edges until getting to a node that does not have any remaining edge to choose
- If the graph is not empty go to step 1

Background	Our Framework	Formalization	Experiments
		000000	

- This algorithm partitions the edges to exactly $N_{odd}/2$ edge-disjoint paths,where N_{odd} is the number of vertices with odd degree (assuming $N_{odd} > 0$)
- The length of an optimal MP1 linearization is $|E| + N_{odd}/2$ ($N_{odd} > 0$)
- It can be implemented in O(|E|) time

Background	Our Framework	Formalization	Experiments
		000000	
Compression Ra	te [,] Unner Round		

Using MP_1 linearization to encode a graph G the bits/edge rate is at most

$$(1+rac{1}{ar{d}})\Big(\lceil \log_2(|V(G)|) + \log_2(ar{d}+1)
ceil + 1\Big)$$

while the in-neighbor and out-neighbor query processing time is

$$O\Big(\sum_{u\in N_{v}} deg(u) \log |V(G)|\Big)$$

The trivial encoding of the graph that answers both in-neighbor and out-neighbor queries uses $2 \log |V|$ bits/edge

Background	Our Framework	Formalization	Experiments
		00000	
Hardnore Doculto			

- How hard is it to compute an optimal MP₂ linearization?
 - We don't know, pretty hard I guess!
- Minimum MP_k linearization when k is part of the input is a generalization of Min-Bandwidth problem and therefore it is NP-hard
- Min-Bandwidth problem: Find an arrangement of vertices of the graph that minimize the maximum stretch of an edge

Background	Our Framework	Formalization	Experiments
0000	000000	000000	●○○○○
MP_{ν} linearization	tion: Heuristic		

- A greedy heuristic to compute MP_k linearization:
 - Start with a random node and add it to list
 - Find the node that has the most number of edges to the last k nodes in the list
 - Remove the edges between this node and the last k nodes in the list
 - Add the node to the list
 - Repeat until no edge is left
- The graph gets sparser and sparser while we are removing the edges
- We use a threshold to reduce the value of k in the process of linearization

Background 0000

Our Framewo 000000

Formalization

Experiments 0000

Experimental Results

				Qu	ery proces	sing time	(ns)
	Dataset statistics		Adj	query	Neigh	. query	
	V	<i>E</i>	FCT	Comp.	Adj. list	Comp.	Adj. list
CN	12006	236978	0.659	520	400	1849	19
PCN	34546	421534	0.145	1300	480	2745	28
P2PN	26518	65369	0.004	500	320	1488	50
LJN	4845609	68475391	0.288	3050	1130	9734	49

 Background 0000 Our Framework 000000 Formalization

Comparison

Comparison: The compression rate of the previous schema [KDD09] on LiveJournal dataset is 14.38 while it can only answer out-neighbor queries, our compression rate is 13.91 while our method can answer both in-neighbor and out-neighbor queries

Background	Our Framework	Formalization	Experiments
0000	000000	000000	000●0
Conclusions			

- We introduce a novel framework for representing graphs
- In its simplest settings, our framework comes with an upper bound on bits/edge rate
- Our method can efficiently answer more types of query and retain the comparable compression rate than the state-of-the-art methods
- Our framework reduces the problem of compressing a graph to an intuitive combinatorial problem

Background	

Future works

- Finding smarter algorithms for linearizing a graph
- Using other compression techniques on top of our framework
- Hardness result for MP_k linearization when k is fixed