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Discovery of subtle yet natural interactions 
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Often assume 
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Decision-theoretic model  
• richer model of activity 
• not scene-specific 
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Propose to model human activity… 



[Kalman 1960] 
[Baum 1966] 
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Dynamics Decisions 

‘motion model’ ‘policy’ 

Towards a decision-theoretic approach 

how? why? 
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Our Approach: 
 

(state, action, reward) 

Reward Expected future payoff 

Infer the reward function from observed sequences 

Activity sequence generated by an Markov Decision Process (MDP) 

Sequence determined by Policy 

Policy determined by Reward function [Ziebart et al 2008] 
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[Munoz et al 2010] 



Learn the weights of the physical features 

Reward function parameterization 



Inverse Optimal Control 
[Graphics by Paul Vernaza] [Abbeel & Ng 2004, Ziebart et al 2008] 

Learn the reward function via 

Input:       Trajectories & feature responses 
Output:    Reward weights 
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1. Begin with a multi-goal forecasting distribution 
2. Update goal posterior using observations 

Destination Forecasting 



Scene A 

Modified Hausdorff Distance (MHD) [pixels]:  
Euclidean distance between observed trajectory and sampled trajectories allowing for small temporal misalignment 

Scene B 

Dataset:          92 videos (A:56 / B:36) 
Setup:         80% test, 20% train (3-fold cross validation) 
Baselines:         Maximum Entropy Markov Model [McCallum'00] 
                        Markov Motion Model [Porikli’04] 
Metrics:         Negative log loss,  
                        Modified Hausdorff distance 
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Forecasting in new scenes 
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