<u>Kris Kitani</u>, Brian Ziebart^{*}, Drew Bagnell, Martial Hebert Carnegie Mellon University, *The University of Illinois at Chicago

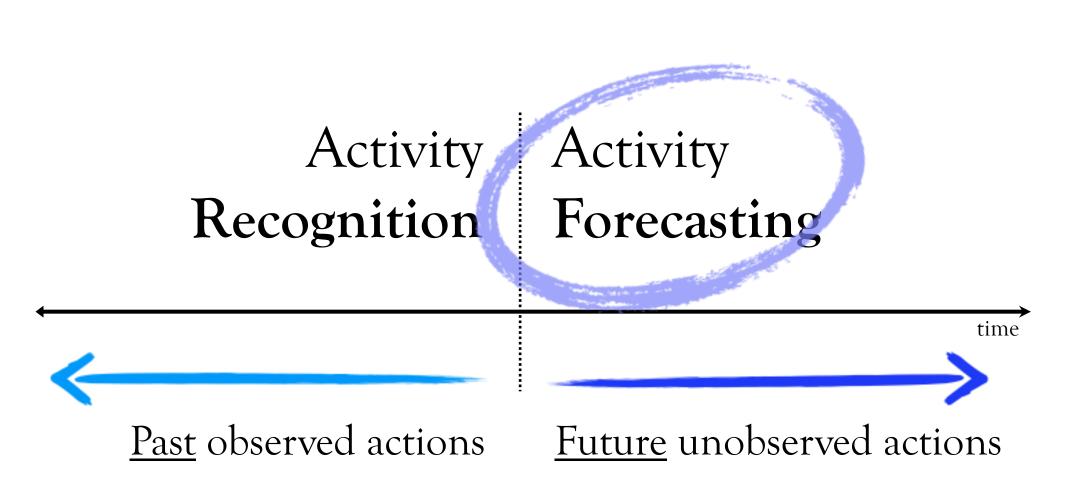
Activity Activity Recognition Forecasting

time

ActivityActivityRecognitionForecasting

time

Past observed actions



destination

Novel scene

[Image from Oh2011]

Novel scene

What path will he take?

destination

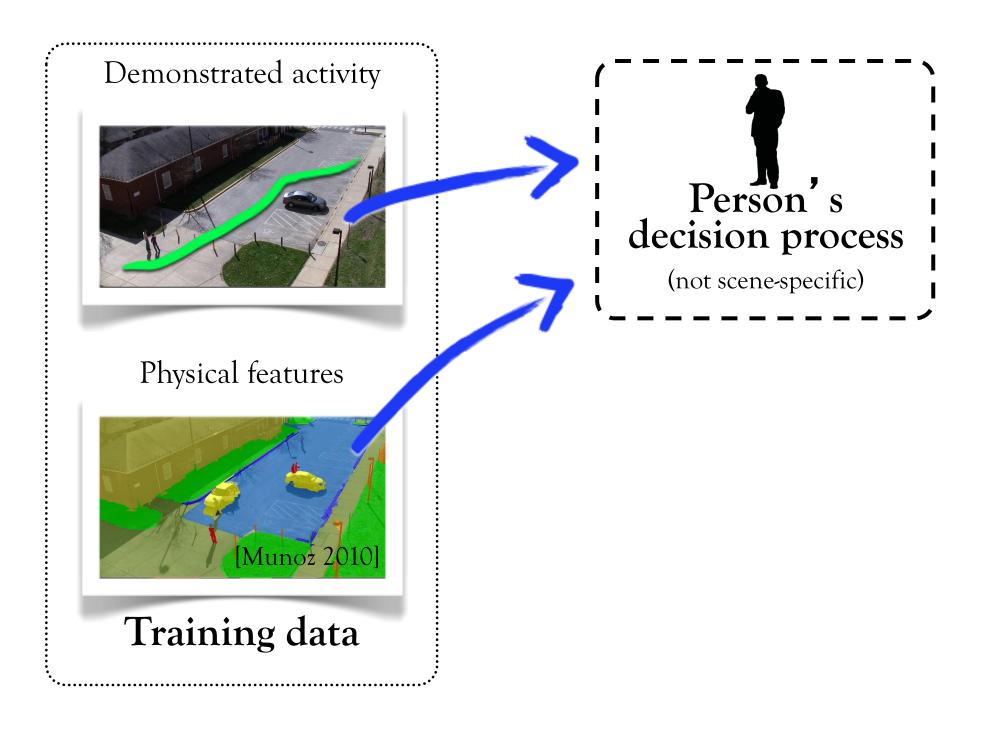
[Image from Oh2011]

Discovery of subtle yet natural interactions

Demonstrated activity

Physical features

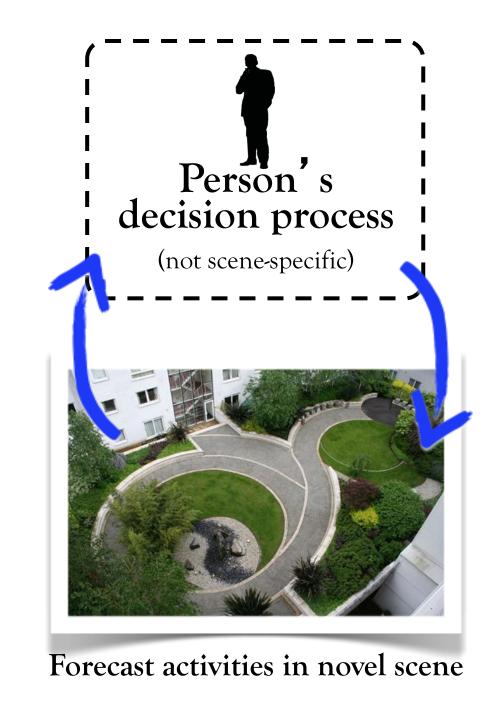
Training data



Demonstrated activity

Physical features

Training data



Trajectory Dynamics

Social Dynamics

Motion Planning

Trajectory Dynamics

Often assume persistent surveillance

Zhou et al CVPR 2012 Zen, Ricci CVPR 2011 Ali, Shah ECCV 2010 Wang et al CVPR 2008 Morris et al ITS 2008 Hu et al PAMI 2006 Porikli ICME 2004 Buzan et al ICPR 2004 Makris et al CVPR 2004 Hongeng, Nevatia CVPR 2003 Brand, Kettnaker PAMI 2000 Stauffer et al PAMI 2000 Oliver et al PAMI 2000 Johnson, Hogg BMVC 1995

Social Dynamics

Kuderer et al RSS 2012 Ali, Shah ECCV 2010 Pellegrini et al ICCV 2009 Mehran et al CVPR 2009 Scorner, Tappen ICCV 2009 Antonini et al IJCV 2006

Decision-theoretic model

obstacle

richer model of activitynot scene-specific

Motion Planning

goal

Dat

Kuderer et al RSS 2012 Gong et al ICCV 2011 Ziebart et al IROS 2010

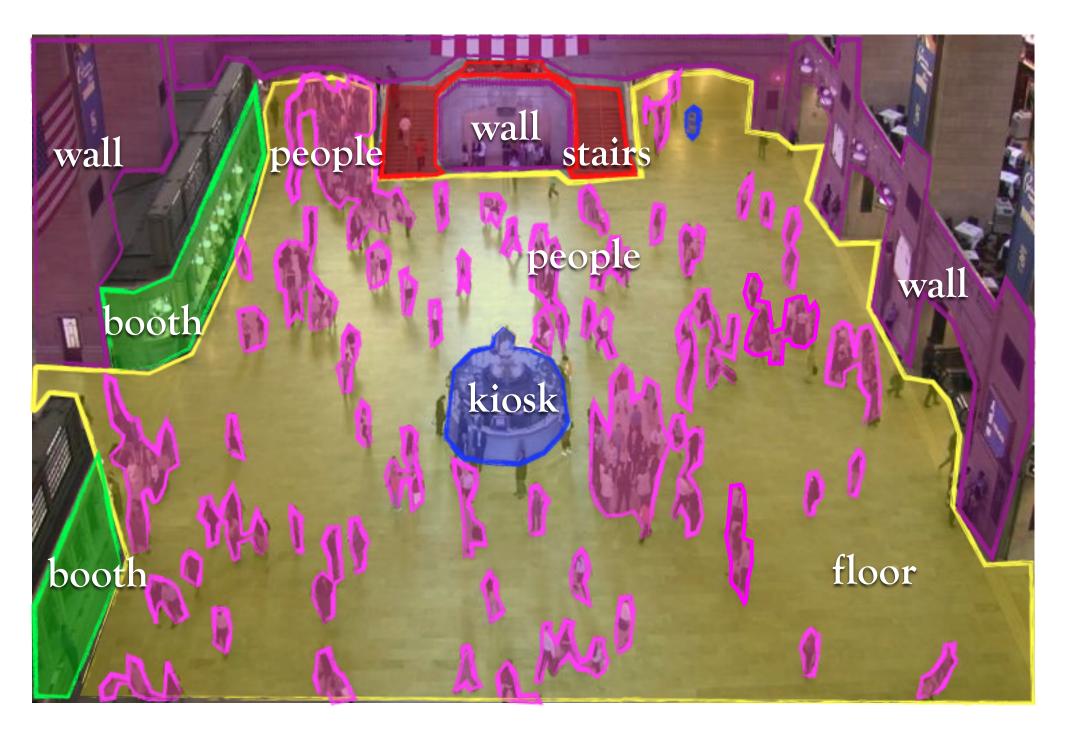
Trajectory Dynamics

Social Dynamics

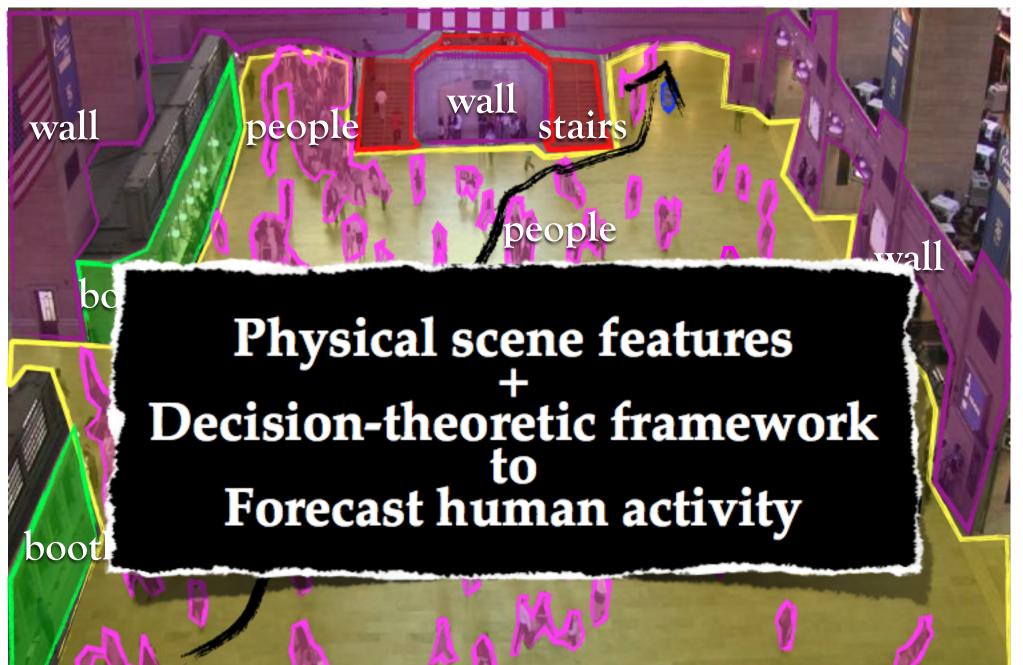
Motion Planning

Trajectory Dynamics

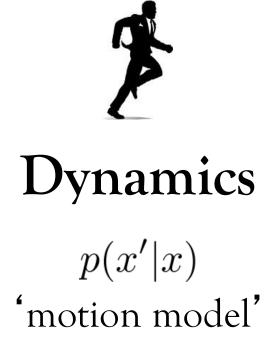
Reduced representations of the physical world



Propose to model human activity...

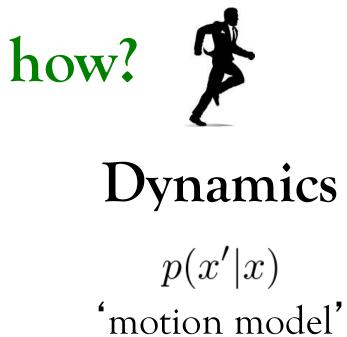


Towards a decision-theoretic approach



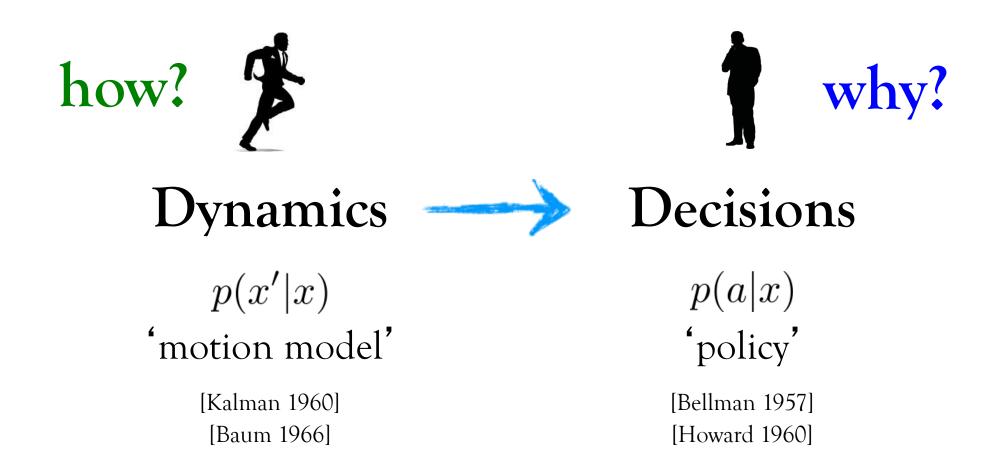
[Kalman 1960] [Baum 1966]

Towards a decision-theoretic approach



[Kalman 1960] [Baum 1966]

Towards a decision-theoretic approach

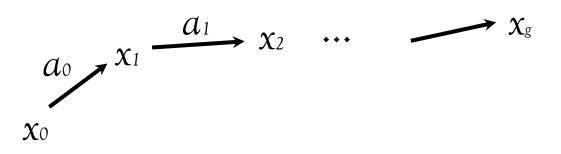


Activity sequence generated by an Markov Decision Process (MDP)

$$S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$$
(state, action, reward)

Activity sequence generated by an Markov Decision Process (MDP)

$$S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$$
(state, action, reward)



Activity sequence generated by an Markov Decision Process (MDP)

$$S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$$
(state, action, reward)

Sequence determined by Policy

p(a|x)

Activity sequence generated by an Markov Decision Process (MDP)

 $S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$ (state, action, reward)

Sequence determined by Policy

$$p(a|x) \propto \exp\left\{ \begin{array}{l} R(x) + \sum_{x'} p(x'|x,a)V(x') \\ \text{Reward} \end{array} \right\}$$
Reward future payoff

[Ziebart et al 2008]

Activity sequence generated by an Markov Decision Process (MDP)

 $S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$ (state, action, reward)

Sequence determined by Policy

$$p(a|x) \propto \exp\left\{\frac{R(x) + \sum_{x'} p(x'|x, a)V(x')}{\text{Reward}}\right\}$$

Policy determined by Reward function

[Ziebart et al 2008]

$$V(x) = \operatorname{soft} \max_{a} Q(x, a)$$
$$Q(x, a) = R(x) + \sum_{x'} p(x'|x, a) V(x')$$

Activity sequence generated by an Markov Decision Process (MDP)

$$S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$$

Sequence determined by Policy

$$p(a|x) \propto \exp\left\{\frac{R(x) + \sum_{x'} p(x'|x, a)V(x')}{\text{Reward}}\right\}$$
Polic determined by Reward function

$$V(x) = \operatorname{soft} \max_{a} Q(x, a)$$

$$Q(x, a) = R(x) + \sum_{x'} p(x'|x, a)V(x')$$
[Ziebart et al 2008]

Activity sequence generated by an Markov Decision Process (MDP)

 $S = \{x_0, a_0, R(x_0), x_1, a_1, R(x_1), \dots, x_g, a_g, R(x_g)\}$ (state, action, reward)

Sequence determined by Policy

$$p(a|x) \propto \exp\left\{\frac{R(x) + \sum_{x'} p(x'|x, a)V(x')}{\text{Expected future payoff}}\right\}$$

Policy determined by Reward function

[Ziebart et al 2008]

$$V(x) = \operatorname{soft} \max Q(x, a)$$
$$Q(x, a) = R(x) + \sum_{x'} p(x'|x, a) V(x')$$

Infer the reward function from observed sequences

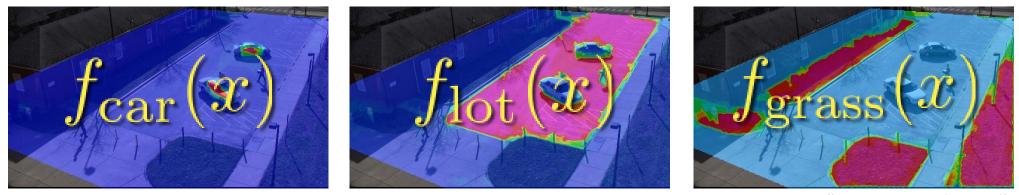
Reward function parameterization

$$R(x;\boldsymbol{\theta}) = \sum_{n} \theta_{n} f_{n}(x)$$

Reward function parameterization

$$R(x;\boldsymbol{\theta}) = \sum_{n} \theta_{n} f_{n}(x)$$

$$R(x; \boldsymbol{\theta}) = \theta_{\text{car}} \cdot f_{\text{car}}(x) + \theta_{\text{lot}} \cdot f_{\text{lot}}(x) + \theta_{\text{grass}} \cdot f_{\text{grass}}(x)$$

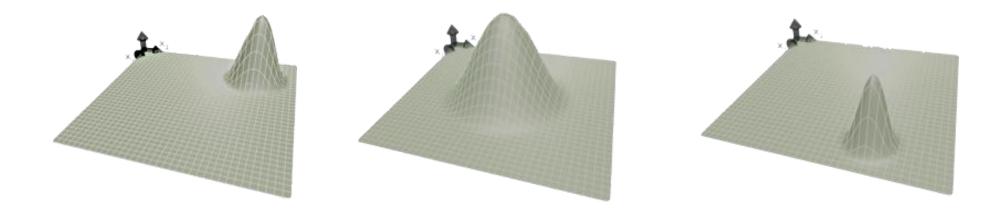


[Munoz et al 2010]

Reward function parameterization

$$R(x;\boldsymbol{\theta}) = \sum_{n} \theta_{n} f_{n}(x)$$

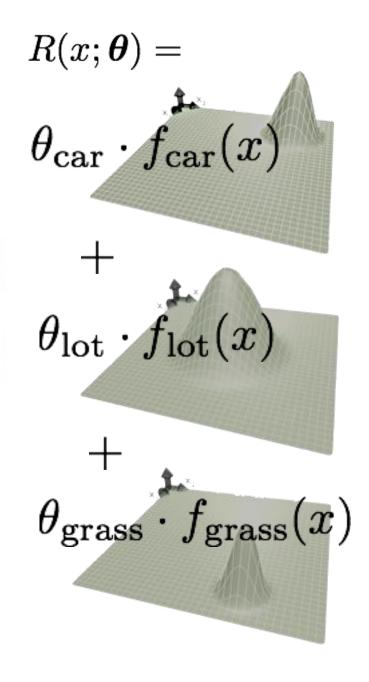
 $R(x; \boldsymbol{\theta}) = \theta_{\text{car}} \cdot f_{\text{car}}(x) + \theta_{\text{lot}} \cdot f_{\text{lot}}(x) + \theta_{\text{grass}} \cdot f_{\text{grass}}(x)$



Learn the weights of the physical features

Input:Trajectories & feature responsesOutput:Reward weights

$-R(x_1,x_2)$

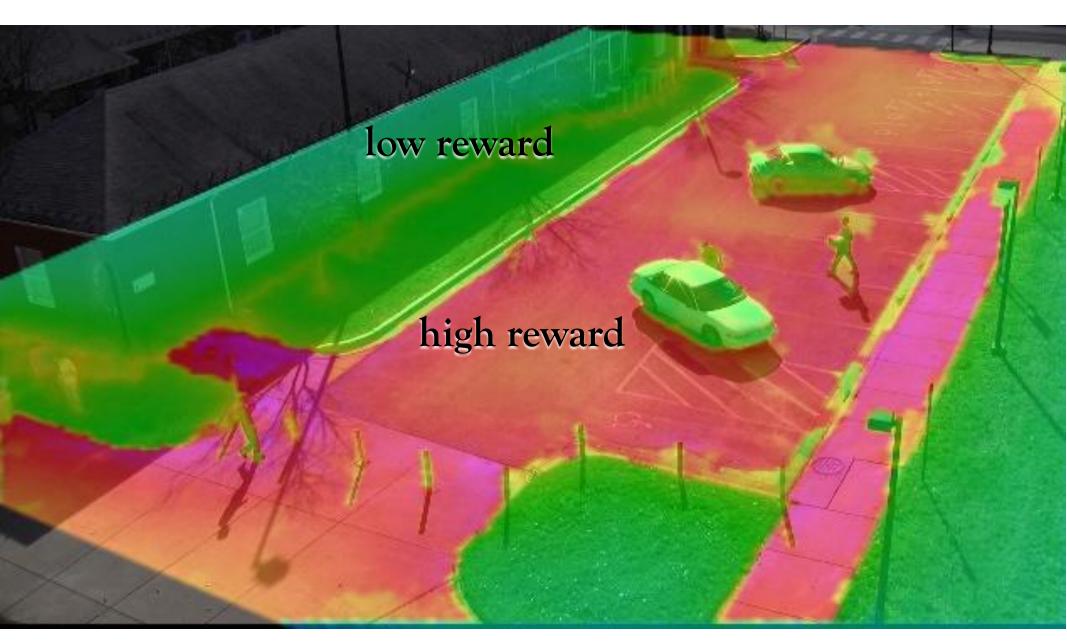


Learn the reward function via Inverse Optimal Control

[Abbeel & Ng 2004, Ziebart et al 2008]

[Graphics by Paul Vernaza]

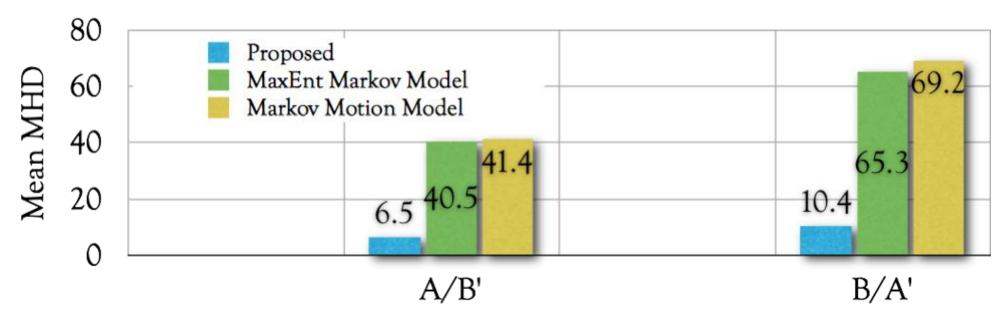
Reward Function



Destination Forecasting

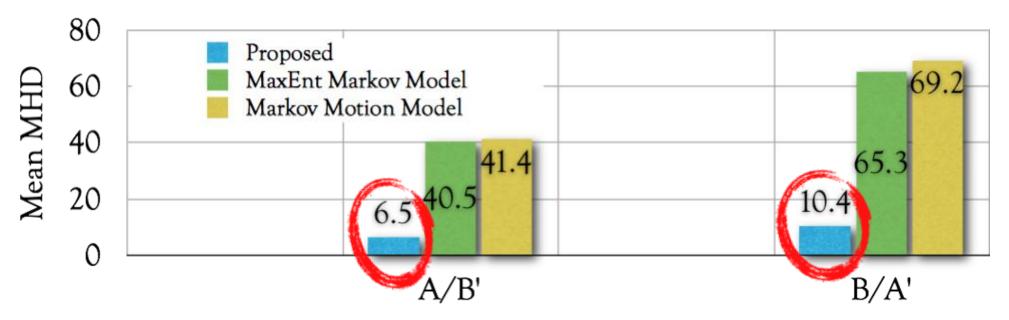
Begin with a multi-goal forecasting distribution
 Update goal posterior using observations

Dataset:	92 videos (A:56 / B:36)
Setup:	80% test, 20% train (3-fold cross validation)
Baselines:	Maximum Entropy Markov Model [McCallum'00]
	Markov Motion Model [Porikli' 04]
Metrics:	Negative log loss,
	Modified Hausdorff distance



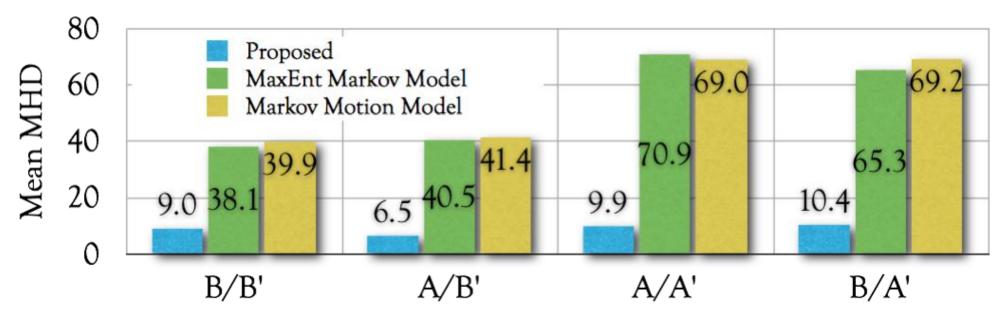
Modified Hausdorff Distance (MHD) [pixels]:

92 videos (A:56 / B:36) 80% test, 20% train (3-fold cross validation)
Maximum Entropy Markov Model [McCallum'00]
Markov Motion Model [Porikli' 04]
Negative log loss,
Modified Hausdorff distance



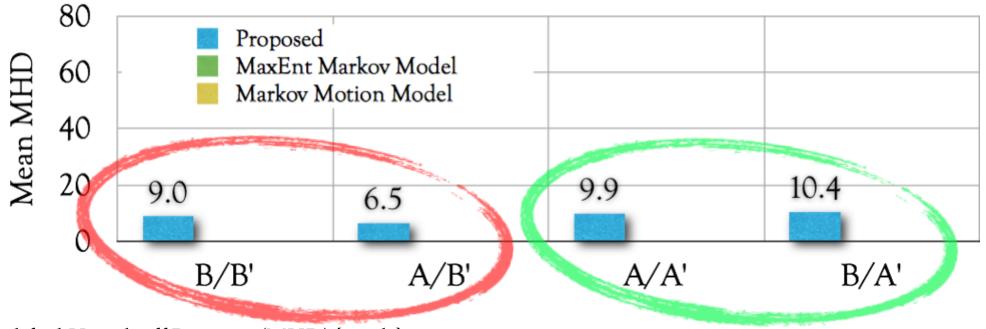
Modified Hausdorff Distance (MHD) [pixels]:

Dataset: Setup:	92 videos (A:56 / B:36) 80% test, 20% train (3-fold cross validation)
Baselines:	Maximum Entropy Markov Model [McCallum'00]
	Markov Motion Model [Porikli' 04]
Metrics:	Negative log loss,
	Modified Hausdorff distance



Modified Hausdorff Distance (MHD) [pixels]:

Dataset: Setup:	92 videos (A:56 / B:36) 80% test, 20% train (3-fold cross validation)
Baselines:	Maximum Entropy Markov Model [McCallum'00]
Dascinics.	Markov Motion Model [Porikli' 04]
Metrics:	Negative log loss,
	Modified Hausdorff distance



Modified Hausdorff Distance (MHD) [pixels]:

Forecasting in new scenes

<u>Kris Kitani</u>, Brian Ziebart^{*}, Drew Bagnell, Martial Hebert Carnegie Mellon University, *The University of Illinois at Chicago

