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Frequent Pattern Mining (FPM)

Widely used tool for exploratory data analysis
Application: Recommendation systems (e.g. Amazon,
Wal-Mart)

Two variants of FPM:
Threshold: return all patterns with frequency above θ
Top-k : return k most frequent patterns



Top-k Frequent Pattern Mining (FPM)

Notation.
U: Universe of patterns
T : Data set of n records
Frequency of a pattern

=
# of records in which it appears

n
Output: The k most frequent patterns in the data set T and
their frequencies

EMR Data 

427.9DX, 44140PX, 44120PX, 93503PX, 
276.3DX, 518.5DX 

373.2DX, 92002PX, 427.9DX, 410.91DX, 
44120PX 

573.9DX, 155.2DX, 276.3DX, 44120PX, 
570DX 

: 

92002PX, 573.9DX, 427.9DX 

PATTERN FREQUENCY 

427.9DX, 518.5DX 12345 

427.9DX, 44120PX 12333 

573.9DX, 276.3DX 12222 

92002PX, 155.2DX 9876 

373.2DX, 410.91DX 9777 

: : 

155.2DX, 570DX 7654 

FPM Output 



Need for privacy

The data set T may contain potentially sensitive
information about an individual

Want to protect the privacy of individual records in T
e.g., Medical records

Caution: Releasing exact results does not preserve privacy
e.g., it is known that inverse FPM is NP-hard [Mie03]

Thus, it is hard to recover the entire data set

But it might be easy to recover specific pieces of information
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Example of privacy breach for FPM

Data Set 

427.9DX, 44140PX, 44120PX, 
93503PX, 276.3DX, 518.5DX 

373.2DX, 92002PX, 427.9DX, 
410.91DX, 44120PX 

573.9DX, 155.2DX, 276.3DX, 
44120PX, 570DX 

: 

92002PX, 573.9DX, 427.9DX 
 

     T1 

Data Set 

373.2DX, 92002PX, 427.9DX, 
410.91DX, 44120PX 

573.9DX, 155.2DX, 276.3DX, 
44120PX, 570DX 

: 

92002PX, 573.9DX, 427.9DX 
 

PATTERN FREQUENCY 

427.9DX, 518.5DX 12345 

427.9DX, 44120PX 12333 

573.9DX, 276.3DX 12222 

92002PX, 155.2DX 9876 

373.2DX, 
410.91DX 

9777 

: : 

155.2DX, 570DX 7654 

PATTERN FREQUENCY 

427.9DX, 518.5DX 12344 

427.9DX, 44120PX 12332 

573.9DX, 276.3DX 12222 

92002PX, 155.2DX 9876 

373.2DX, 
410.91DX 

9777 

: : 

155.2DX, 570DX 7654 

First row of T1 
must contain 

427.9DX,518.5D
X,44120PX 

     T2 



This work

Provides algorithms for releasing high-frequency patterns
while providing a rigorous privacy guarantee

We use differential privacy [DMNS06]

Two algorithms:
Score perturbation-based algorithm
(adapting [DMNS06])
Exponential sampling-based algorithm (adapting [MT07])

Rigorous privacy and utility guarantees
The experimental results support theoretical predictions
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Differential Privacy

Output should not reveal information about any individual
record
Informally, the output of FPM should not change by much
by changing one record of T

[DMNS06] A randomized algorithm A is ε-differentially private if
for all data sets T ,T ′ ∈ Dn differing in at most one record and
for all events O ⊆ Range(A):

Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O]

Data Set
427.9DX, 44140PX, 44120PX, 93503PX, 276.3DX, 
518.5DX

373.2DX, 92002PX, 427.9DX, 410.91DX, 44120PX

573.9DX, 155.2DX, 276.3DX, 44120PX, 570DX

:

92002PX, 573.9DX, 427.9DX

T

Data Set
92002PX, 570DX, 427.9DX

373.2DX, 92002PX, 427.9DX, 410.91DX, 44120PX

573.9DX, 155.2DX, 276.3DX, 44120PX, 570DX

:

92002PX, 573.9DX, 427.9DX

T’ Algorithm
(A)

T or T’ 
???
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Why differential privacy?

Protects against arbitrary side information
Adversary learns the same thing whether or not Alice’s
record was there in the data set

Protects against attacks like re-identification, attribute
linkage etc
Widely studied since 2006
Differentially private algorithms exist for

learning [BDMN05,KLNRS08], statistical inference [DL09],
recommendation systems [MM09]
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Related work [AH05],[EGS03]

Randomized response: Each entry in the data set T is
independently randomized before allowing data mining
algorithm to access it

[AH05],[EGS03] considered randomized response in the
context of FPM

Work of [AH05] is a generalization of [EGS03]
Privacy guarantees are equivalent to differential privacy
No formal utility guarantees
Our algorithms perform consisently better (in experiments)
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Need for approximate utility

By definition, any non-trivial differentially private algorithm
has to introduce error in the output

Differentially private FPM will
insert low frequency patterns in the output
remove high frequency patterns from the output
perturb the frequencies of the patterns being output

An “useful” FPM output should have small error
To quantify utility, we

introduce a notion of “approximate” top frequent patterns
evaluate our algorithms both theoretically and empirically
with respect to this notion
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Approximate utility for FPM

Let qk be the k th highest frequency based on data set T
Fr

eq
u

e
n
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Patterns 

{B,C} {A,B} {E,F} {B,D} {C,F} {A,G} {D,F} {B,G} 

qk-γ 

qk+γ 

ALWAYS 

NEVER 

An FPM output is
(γ, η)-useful if:

(Soundness) No pattern
in the output has
frequency less than
(qk − γ)

(Completeness) Every
pattern with frequency
greater than (qk + γ) is
in the output
(Precision) The
reported frequency for
every pattern in the
output is within η of its
true frequency
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Score perturbation-based algorithm



Score perturbation-based algorithm
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pairs of attributes, sorted by true frequency 
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Score perturbation-based algorithm

Top 5 frequencies 
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Score perturbation-based algorithm
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Output: 
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= noisy frequency Top 5 noisy frequencies 

List of patterns and noisy frequencies (with fresh noise) 



Details of the algorithm
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= noisy frequency Top 5 noisy frequencies 

List of patterns and noisy frequencies (with fresh noise) 

How much noise?
Laplace noise with λ = Θ

( k
εn

)
Lap(λ) = 1

2λe−
|x|
λ

Straightforward implementation needs time O(|U|)
Might be exponentially large
e.g., Frequent Itemset Mining: m items→ 2m itemsets

Our implementation takes time “roughly” ∝ k
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Analysis (Privacy)

Theorem: The algorithm is ε-differentially private

Naive analysis:
Consider the frequencies of |U| patterns as a vector of
length |U|
Assure privacy for each element of the vector individually
using [DMNS06] style analysis
Requires Θ

(
|U|
εn

)
noise for ε-differential privacy

Our analysis: Θ
( k
εn

)
noise suffices
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Naive analysis:
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length |U|
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Analysis (Performance)

Theorem (Utility): For all ρ > 0: with probability at least 1− ρ,
the output is (γ, η)-useful, where

γ =
8k
εn

(
log
|U|
ρ

)
and

η =
2k
nε

ln
(

k
ρ

)
Take away: Privacy does not degrade the utility by too much

Fr
eq

u
e

n
cy

 

Patterns 

{B,C} {A,B} {E,F} {B,D} {C,F} {A,G} {D,F} {B,G} 

qk-γ 

qk+γ 

ALWAYS 

NEVER 



Experimental results (Frequent Itemset Mining)

All the data sets from the FIMI repository
(http://fimi.cs.helsinki.fi/)
Accurate results for a wide range of parameters (k , ε, γ, ρ)
Error rates match theoretical predictions
This talk: variation of FNR (False Negative Rate) with ε

Note that False Positive Rate is not an effective measure of
utility because the # of true negatives is inherently high

http://fimi.cs.helsinki.fi/


Score perturbation-based algorithm: Variation of FNR
vs ε

Parameters: ρ = 0.1, k = 10 and the size of the itemsets
mined= 3
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Related Work

Randomized response [AH05]
[AH05] introduces the FRAPP framework

DET-GD and RAN-GD are two algorithms under the FRAPP
framework

Use the CENSUS data set used by [AH05]
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Conclusion

This work:
First work towards providing both formal privacy and utility
guarantees for FPM

Two algorithms which provide a strong notion privacy and
are accurate on a wide range of data sets
Far more accurate than previous, randomized-response
algorithms
Our algorithms are also useful for the more general
problem of private ranking [KKMN09, GMW+09]

In the paper:
Another algorithm: Exponential sampling-based
Implementation details for both the algorithms
Comprehensive experimental results

Open Problem:Can we have differentially private
algorithms for other high dimensional problems?
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Exponential sampling-based algorithm

Data set 
T

Sample k patterns without replacement s.t.
Pr[selecting pattern i] ∝ exp(qT(i)ε/2k)

Output the patterns picked 
and their noisy frequencies

Frequencies of all 
the patterns in U

Given universe of patterns U

Add Lap(2k/ εn) noise to the frequencies of 
the patterns picked



Analysis

The privacy guarantee is same as score
perturbation-based algorithm
The utility guarantee is better by a small constant factor
The algorithm runs in O(|U| log∗ |U|)



Exponential sampling-based algorithm: Running time
on various data sets

Data FIM Exp Mech (ms)
sets (ms) ε

2 = 0.06 ε
2 = 0.7 ε

2 = 1.3
accidents 897 878(1.0) 875(1.0) 895(1.0)
chess 61 - 77(1.3) 89(1.4)
connect 273 364(1.3) 284(1.0) 300(1.1)
kosarak 1077 1073(1.0) 1084(1.0) 1058(0.98)
mush 105 10542(100.1) 78(0.8) 125(1.2)
pumsb 386 834(2.2) 393(1.0) 389(1.0)
pumsb* 288 317(1.1) 288(1.0) 289(1.0)
retail 150 - 183(1.2) 172(1.2)
T10 530 - 6912(13.1) 1339(2.5)
T40 6191 - 33006(5.3) 14190(2.3)
mush=mushroom, pumsb*=pumsb-star, T10=T10I4D100K,

T40=T40I10D100K

Table: Run-time overhead due to privacy step



Score perturbation-based algorithm

γ=
8𝑘

ε𝑛
𝑙𝑛 𝑈 /ρ        , ε, U,k,qk

T, ρ 
S0= patterns with 

frequency >ψ = qk
T−γ  

Also get their frequencies. 

Assume 
frequency of all 

other patterns= ψ 

T 



Score perturbation-based algorithm

γ=
8𝑘

ε𝑛
𝑙𝑛 𝑈 /ρ        , ε, U,k,qk

T, ρ 
S0= patterns with 

frequency >ψ = qk
T−γ  

Also get their frequencies. 

Assume 
frequency of all 

other patterns= ψ 

Sample “noise”  i.i.d from 
𝐿𝑎𝑝(4𝑘/εn). Add to the 
frequencies of the 
patterns in U. 

𝐿𝑎𝑝(λ)=
1

2λ
𝑒
−
|𝑥|

λ  

T 



Score perturbation-based algorithm

γ=
8𝑘

ε𝑛
𝑙𝑛 𝑈 /ρ        , ε, U,k,qk

T, ρ 
S0= patterns with 

frequency >ψ = qk
T−γ  

Also get their frequencies. 

Assume 
frequency of all 

other patterns= ψ 

Sample “noise”  i.i.d from 
𝐿𝑎𝑝(4𝑘/εn)Add to the 
frequencies of the 
patterns in U. 

𝐿𝑎𝑝(λ)=
1

2λ
𝑒
−
|𝑥|

λ  

Pick the top k according to 
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Two algorithms: Variation of FNR vs ε

Parameters: ρ = 0.1, k = 10 and the size of the itemsets
mined= 3
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(g) Score perturbation-based
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(h) Exponential sampling-based


