Feature Selection for Support Vector Regression Using Probabilistic Prediction

Jian-Bo Yang and Chong-Jin Ong

yangjianbo@nus.edu.sg mpeongcj@nus.edu.sg

National University of Singapore

CONTENTS

Introduction

Proposed Method

Experiments

Proposed Method

Experiments

Background

Feature Selection is a technique of selecting optimal features set among original features set by removing irrelevant or redundant features.

Benefits:

- Increase system interpretability
- Improve generalization performance
- Minimize the overfitting for some learning algorithms

Types:

- Filter Methods: independent of the underlying learning algorithm
- Wrapper Methods: rely heavily on the specific structure of the underlying learning.

Challenge:

 Using feature selection for classification on regression problem may not work well — potential loss of important ordinal information.

Support Vector Regression

Given a data set $\mathcal{D} = \{x_i, y_i\}, i \in \mathcal{I}_{\mathcal{D}}$, standard SVR solves the following Primal Problem (PP) over ω, b, ξ, ξ^* :

$$\min \quad \frac{1}{2}\omega'\omega + C \sum_{i \in \mathcal{I}_{\mathcal{D}}} (\xi_i + \xi_i^*)$$

$$s.t. \quad y_i - \omega'\phi(x_i) - b \le \epsilon + \xi_i, \quad \forall i \in \mathcal{I}_{\mathcal{D}}$$

$$\omega'\phi(x_i) + b - y_i \le \epsilon + \xi_i^*, \quad \forall i \in \mathcal{I}_{\mathcal{D}}$$

$$\xi_i, \xi_i^* \ge 0, \quad \forall i \in \mathcal{I}_{\mathcal{D}}$$

The regressor function is known to be

$$f(x) = \omega' \phi(x) + b$$

It only provides an estimate, f(x), for output y for any x but provides no information on the confidence level of this estimate.

A popular approach [Bishop 1995] to incorporating probabilistic information is to let

$$y = f(x) + \delta.$$

where noise $\delta \in \mathcal{L}(0, \sigma)$ or $\in \mathcal{N}(0, \sigma)$ Equivalently, this implies that density functions of y for a given x are

$$p^{L}(y|x) = \frac{1}{2\sigma} \exp(-\frac{|y - f(x)|}{\sigma}),$$

$$p^{G}(y|x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - f(x))^{2}}{2\sigma^{2}}\right)$$

where σ is obtained by maximizing

$$L(\sigma) = \prod_{i \in \mathcal{I}_{\mathcal{D}}} p(x_i, y_i) = \prod_{i \in \mathcal{I}_{\mathcal{D}}} p(y_i | x_i) p(x_i).$$

Proposed Method

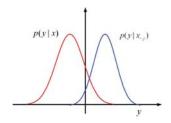
Experiments

Proposed Feature Selection Criterion

• Ranking criterion:

$$S_D(j) = \int D_{KL}(p(y|x); p(y|x_{-j}))p(x)dx.$$

where $x_{-j} \in \mathbb{R}^{d-1}$ is the sample x with the j^{th} feature removed.



• Motivation:

the greater the D_{KL} divergence between p(y|x) and $p(y|x_{-j})$ over the x space, the greater the importance of the j^{th} feature.

• A full ranking list of features need $S_D(j)$ to be evaluated d times, each time with different j.

Random Permutation

• Random permutation:

$$\mathbf{D} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} x_1^1 & \dots & x_1^j & \dots & x_1^d \\ x_2^1 & \dots & x_2^j & \dots & x_2^d \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_N^1 & \dots & x_N^j & \dots & x_N^d \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{D}_{(\mathbf{j})} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} x_1^1 & \dots & x_1^j & \dots & x_1^d \\ x_2^1 & \dots & x_1^j & \dots & x_2^d \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_1^1 & \dots & x_2^j & \dots & x_n^d \end{pmatrix}$$

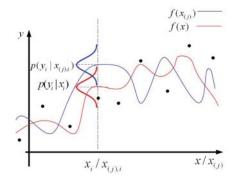
• **Theorem** [Shen, Ong, Li, & Wilder-Smith, 2008]: Assume data samples are sufficient rich,

$$p(y|x_{(i)}) = p(y|x_{-i})$$

Equivalent Form of the Proposed Criterion

$$S_D(j) = \int D_{KL}(p(y|x); p(y|x_{(j)}))p(x)dx.$$

Figure: Demonstration of the proposed feature ranking criterion with d = 1. Dots indicate locations of y_i



Approximations

• Step 1: Further approximation of integration

$$\hat{S}_D(j) = \frac{1}{|\mathcal{I}_D|} \sum_{i \in \mathcal{I}_D} D_{KL}(p(y|x_i); p(y|x_{(j),i})).$$

• Step 2: Approximation using probabilistic outputs of SVR

$$\hat{S}_D(j) = \frac{1}{|\mathcal{I}_D|} \sum_{i \in \mathcal{I}_D} D_{KL}(\mathbf{p}(\mathbf{y}|\mathbf{x}_i); \mathbf{p}(\mathbf{y}|\mathbf{x}_{(j),i})).$$

p(.) can be approximated by $p^{L}(.)$ or $p^{G}(.)$

Explicit form exist. E.g. if p(.) is approximated by $p^{L}(.)$, then:

$$\hat{S}_D^L(j) = \frac{1}{|\mathcal{I}_D|} \sum_{i \in \mathcal{I}_D} \left[\frac{\sigma^L}{\sigma_{(j)}^L} \exp\left(-\frac{|f(x_i) - f(x_{(j),i})|}{\sigma^L}\right) + \frac{|f(x_i) - f(x_{(j),i})|}{\sigma_{(j)}^L} + \ln \frac{\sigma_{(j)}^L}{\sigma^L} \right].$$

SD measure can be used together with standard recursive feature elimination (RFE).

- 1. Start with all features
- 2. Delete feature(s) with the smallest value(s) of \hat{S}_D^L (or $\hat{S}_{\mathcal{B}}^{G}$)

Proposed Method

Experiments

Experiment Setting

- Benchmark Methods: Correlation coefficient method (Corr), Dependence maximization method (HSIC), SVM-RFE method ($\Delta \|\omega\|^2$)
- Evaluation: Mean squared error rate (MSE)
- Student Test:
 - Paired t-test between the proposed method and each of the other methods is conducted using different number of top ranked features.

•

 $\mu_0: MSE_{SD} = MSE_{Benchmar}$ $\mu_1: MSE_{SD} \neq MSE_{Benchmar}$

The chance that this null hypothesis μ_0 is true is measured by the returned p-value and the significance level is set at 0.05 for all experiments.

Artificial Problems

Table: Description of artificial problems. o is the number of known important features.

Problems	$ D_{trn} $	$ D_{tst} $	d	0
Exponential Func	100,70,50,40,30,20	1800	10	2
Additive Func	200,100,70,50	1800	10	5
Interactive Func	200,100,70,50	1800	10	5

Target Concept

- Exponential Func: $y = 10 \exp(-((x^1)^2 + (x^2)^2)) + \delta$
- Additive Func: $y = 0.1 \exp(4x^1) + \frac{4}{1 + \exp(-20(x^2 0.5))} + 3x^3 + 2x^4 + x^5 + \delta$
- Interactive Func: $y = 10\sin(\pi x^1 x^2) + 20(x^3 0.5) + 10x^4 + 5x^5 + \delta$

Table: Number of realizations that known important features are correctly ranked in the top positions over 30 realizations..

	Exponential Func						
$Method \setminus \mathcal{D}_{trn} $	100	70	50	40	30	20	
Corr	0	0	0	0	0	0	
HSIC-RFE	30	29	28	22	16	9	
$\Delta \ \omega\ ^2$ -RFE	30	30	28	28	1	0	
SD-L-RFE	30	30	30	30	26	17	
SD-G-RFE	30	30	29	28	26	13	

	Additive Func				Interactive Func			
$Method \setminus \mathcal{D}_{trn} $	200	100	70	50	200	100	70	50
Corr	15	8	5	3	4	3	2	1
HSIC-RFE	14	5	5	3	7	9	8	6
$\Delta \ \omega\ ^2$ -RFE	4	5	11	4	0	14	9	10
SD-L-RFE	30	27	21	19	30	30	29	12
SD- G - RFE	30	28	23	19	30	30	30	11

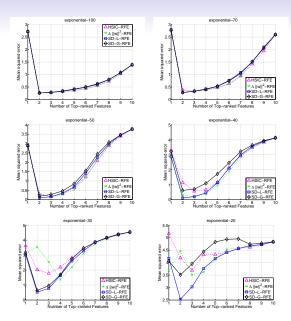


Figure: Average test MSE against top-ranked features over 30 realizations.

Real-World Problems

Table: Description of real-world data sets. C, κ and ϵ refer to SVR hyper-parameters C, κ , ϵ respectively.

Data sets	$ \mathcal{D}_{trn} $	$ \mathcal{D}_{tst} $	d	C	κ	ϵ
$\overline{\mathrm{mpg}}$	353	39	7	2^{6}	2^{-4}	2
abalone	1254	2923	8	2^{6}	2^{-5}	2
cpusmall	820	7372	12	2^{6}	2^{-5}	2
housing	456	50	13	2^{6}	2^{-4}	2
pyrim	67	7	27	2^{0}	2^{-6}	2^{-5}
triazines	168	18	60	2^{-1}	2^{-6}	2^{-3}

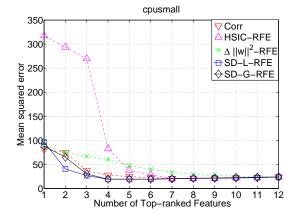


Table: t-test on data set cpus mall for 30 realizations

	SD-L-RFE	Corr		HSIC-RFE		$\Delta \ \omega\ ^2$ -RFE		SD-G-RFE	
No.	mean	mean	p-	mean	p-	mean	p-	mean	p-
	value	value	value	value	value	value	value	value	value
2	40.39	74.38	0.00+	293.6	0.00+	75.45	0.00+	64.81	0.00+
4	18.99	27.66	0.00+	82.44	0.00+	60.09	0.00+	19.33	0.55
6	19.20	22.33	0.01+	28.57	0.32	39.89	0.00+	19.22	0.97
8	20.66	21.09	0.49	20.49	0.78	29.36	0.00+	21.28	0.32
10	21.64	21.57	0.92	22.49	0.28	25.61	0.00+	22.52	0.24
12	23.78	23.78	1.00	23.78	1.00	23.78	1.00	23.78	1.00

Proposed Method

Experiments

- A new wrapper based feature selection method for regression problem is proposed. It measures the importance of a feature by the aggregation, over the feature space, of the sensitivity of SVR probabilistic prediction with and without the feature.
- The experiments results show that the proposed method performs at least as well, if not better, than some of the benchmark methods in the literature
- The advantage of the proposed methods is more significant when the training data is sparse, or has a low samples-to-features ratio.
- As a wrapper method, the computational cost of proposed methods is moderate.