A Hierarchical Information Theoretic Technique for the Discovery of Non Linear Alternative Clusterings

James Bailey and Xuan-Hong Dang

Department of Computer Science and Software Engineering The University of Melbourne, Australia

Introduction

- Cluster analysis: group "similar"
 objects into clusters
- □ No single solution
- **Examples**:
 - Documents
 - Genes

Cluster by pose or individual (CMU data)?

- Images
- => Equally important, different views regarding the data

Presentation Outline

□ Introduction

- Clustering Objectives
- Information Theoretic Approach
- Experiments
- Conclusions
- 🗆 Q&A

Clustering Objectives

□ Many algorithms have been developed!

- Assumptions about data distributions (implicitly/explicitly) made.
- □ We address different aspect:
 - No assumptions imposed regarding data distributions
 - Clusters' boundary functions can be non-linear!

Clustering Objectives

- □ Given a dataset X = {x1,...,xn} and a reference clustering C⁻
- \Box Find C^+ from X s.t.
 - High dissimilarity (from C⁻)
 - High quality (strong prob. relationship with X)
- Purely relying on Information Theory;
 fully exploit information embedded in data

Lower bound for probability of error (Fano's theorem):

$$Pr(c^+ \neq \widehat{c^+}) \ge \frac{H(C^+|X) - 1}{\log(|C^+|)} = \frac{H(C^+) - I(C^+;X)}{\log(|C^+|)}$$

- \Box C⁺ has little uncertainty given observation X
- \Box X contains much information of C^+ .
- Thus, a good clustering if C⁺ and X has strong probabilistic relationship.

X, Y are random variables H(X): Entropy of X H(X|Y): Cond. entropy of X given Y I(X;Y): mutual info. btw X and Y

Our dual-objective clustering function:

 $C^{+} = \underset{C^{+}}{\arg\max} \{ I(C^{+}; X) - \eta I(C^{+}; C^{-}) \}$

- C⁺ and X are statistically dependent
- C⁺ and C⁻ are statistically *independent*

Unfortunately, estimating I(X;Y) in Shannon's definition is practically hard

$$I(X;Y) = \iint p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy$$
$$= D_{KL}(p(x,y) \parallel p(x)p(y))$$

- Require availability of all variables' distributions
- Numerical integration

X, Y are random variables H(X): Entropy of X H(X|Y): Cond. entropy of X given Y I(X;Y): mutual info. btw X and Y

- Our task is to optimize MI, rather than computing it exactly.
- □ In such cases, a more general divergence can be used:

$$D(p||q) = \frac{1}{\alpha(\alpha-1)} \sum_{i=1}^{n} (p^{\alpha}(x_i) - \alpha \frac{p(x_i)}{q^{1-\alpha}(x_i)} + (\alpha-1)q^{\alpha}(x_i))$$

where $\alpha \neq 0, 1$.

Selecting $\alpha=2$ results in Quadratic Mutual Information (with Renyi entropy):

$$I_{R_2}(X;Y) = \iint (p(x, y) - p(x)p(y))^2 dx dy$$

In quadratic form, but practically computed from data!

□ Why?

Non-parametric methods for pdfs estimation

- no assumptions of the underlying densities' form
- approx. for arbitrary distributions
- Parzen-windows:
 - Placing kernels at data samples and density is sum of kernels $p(x) = \frac{1}{n} \sum_{i=1}^{n} G(x - x_i, \sigma^2)$ (info. potential, local interaction between xi and xj)

Note for Gaussian kernel, convolution of 2 Gausses

$$\int G(x - x_i, \sigma^2) G(x - x_j, \sigma^2) dx = G(x_i - x_j, 2\sigma^2)$$

Computing quadratic MI is thus computationally *INexpensive* when combined with Parzen-windows.

With
$$p(x | c_i^+) = \frac{1}{n_i} \sum_{l=1}^{n_i} G(x - x_l, \sigma^2)$$

$$I_{R_2}(C^+;C^-) = \sum_{c_i^+} \sum_{c_j^-} (p(c_i^+,c_j^-) - p(c_i^+)p(c_j^-))^2$$
$$I_{R_2}(C^+;X) = \sum_{c_i^+} \int_{x} (p(c_i^+,x) - p(c_i^+)p(x))^2 dx$$

Hypercube kernel

Problem is simple with a hierarchical clustering technique

Start with n clusters and merging 2 at each

iterative step.

Classical similarity matrix is replaced by two matrices:

 \square D_{in} : account for variation in $I_{R2}(C^+;X)$

 $\square \quad \mathcal{D}_{btw}: \text{ account for variation in } I_{R2}(\mathcal{C}^+; \mathcal{C}^-)$

•
$$c_{\beta}^{+}$$
 is merged to c_{α}^{+} if
 $(\alpha, \beta) = \underset{i,j}{\operatorname{arg\,max}} \{D_{in} - \eta D_{btw}\}$

Given matrix of info. potentials between any 2 samples,
 D_{in} and D_{btw} are computed easily (see paper).

- Clustering quality depends on kernel parameter sigma.
 - Work reasonably well for many datasets when sigma is selected s.t. mean squared error between estimator and true density p(x) is optimized.
- □ Algorithm complexity
 - Matrix of local interactions (info. potentials) between any 2 data samples: O(dn*n)
 - Calculation of MI's variation: O(n*n)
 - Search and delete element from matrix O(n*log(n))
 - Since n-1 steps of merging, overall complexity is O(n*nlog(n)+dn*n)
 - Same time as that of a conventional tech. using group-avg similarity

Experiments

Compared against 8 other algorithms

Use 4 syn. datasets and 4 real-world datasets

- Evaluation based on
 - Clustering quality (*higher -> better*)
 - □ F-measure if knowing true labels
 - Dunn Index if not
 - Clustering dissimilarity (*smaller -> better*)
 - Normalized Mutual Information
 - Jaccard Index

Experiments

0.6

0.45

₩ 0.3

0.15

0 4

Results on CMU dataset

Table 1: Results on CMU dataset

Methods	Segmentation			Vehicle			Vowel		
	NMI	$_{ m JI}$	DI	NMI	$_{ m JI}$	DI	NMI	$_{ m JI}$	DI
Algo1	0.51	0.38	1.31	0.38	0.39	1.28	0.42	0.19	1.27
Algo 2	0.44	0.3	1.27	0.39	0.44	1.46	0.43	0.21	1.3
ADFT	0.46	0.31	1.3	0.35	0.37	1.42	0.48	0.33	1.41
COALA	0.44	0.29	1.25	0.29	0.35	1.51	0.36	0.27	1.29
CIB	0.45	0.32	1.32	0.33	0.41	1.39	0.41	0.26	1.25
\mathbf{Deckm}	0.39	0.29	1.26	0.26	0.36	1.4	0.27	0.17	1.26
ConvEM	0.41	0.3	1.27	0.25	0.34	1.41	0.31	0.19	1.23
CAMI	0.31	0.27	1.44	0.23	0.32	1.53	0.24	0.11	1.38
NACI	0.26	0.25	1.46	0.21	0.28	1.51	0.22	0.11	1.38

Table 2: Results on 3 real world datasets

Conclusions

- An unsupervised learning technique directly address non-linear boundary clustering function
- □ No assumptions made about data distributions
- □ Firmly rooted from information theory
- Well performing on various benchmark datasets
- Future work: convert to iterative approach to reduce computation time

Thank you (Q&A)