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IntroductionIntroduction

� Cluster analysis: group “similar”

objects into clusters

� No single solution 

� Examples: 

� Documents

� Genes

� Images

=> Equally important, different views 

regarding the data

Cluster by pose or individual (CMU data)?
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Presentation OutlinePresentation Outline

� Introduction

� Clustering Objectives

� Information Theoretic Approach

� Experiments

� Conclusions

� Q&A
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Clustering ObjectivesClustering Objectives

� Many algorithms have been developed! 

� Assumptions about data distributions 

(implicitly/explicitly) made.

� We address different aspect:

� No assumptions imposed regarding data 

distributions

� Clusters’ boundary functions can be 

non-linear!
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Clustering ObjectivesClustering Objectives

� Given a dataset X = {x1,…,xn} and a 

reference clustering C-

� Find C+ from X s.t.

� High dissimilarity (from C-)

� High quality (strong prob. relationship 

with X)

� Purely relying on Information Theory; 

fully exploit information embedded in 

data

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2



6

Information Theoretic ApproachInformation Theoretic Approach

� Lower bound for probability of error (Fano’s theorem):

� C+ has little uncertainty given observation X

� X contains much information of C+.

� Thus, a good clustering if C+ and X has strong 

probabilistic relationship.

H(Y)H(X)

I(X;Y)
H(Y|X)

H(X|Y)

H(X,Y)

X, Y are random variables

H(X): Entropy of X

H(X|Y): Cond. entropy of X given Y

I(X;Y): mutual info. btw X and Y
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Information Theoretic ApproachInformation Theoretic Approach

� Our dual-objective clustering function:

� C+ and X are statistically dependent

� C+ and C- are statistically independent

� Unfortunately, estimating I(X;Y) in Shannon’s definition is 

practically hard

� Require availability of all variables’ distributions

� Numerical integration
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Information Theoretic ApproachInformation Theoretic Approach

� Our task is to optimize MI, rather than computing it exactly. 

� In such cases, a more general divergence can be used:

� Selecting α=2 results in Quadratic Mutual Information (with 

Renyi entropy):

� In quadratic form, but practically computed from data!
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Information Theoretic ApproachInformation Theoretic Approach

� Why?

� Non-parametric methods for pdfs estimation 

� no assumptions of the underlying densities’ form

� approx. for arbitrary distributions 

� Parzen-windows:

� Placing kernels at data samples 

and density is sum of kernels

� Note for Gaussian kernel, convolution of 2 Gausses

� Computing quadratic MI is thus

computationally INexpensive when

combined with Parzen-windows.

With

∑
=

−=

n

i

ixxG
n

xp
1

2 ),(
1

)( σ

)2,(),(),( 222
σσσ jiji xxGdxxxGxxG −=−−∫

(info. potential, local 
interaction between 
xi and xj)

∑∑
+ −

−+−+−+
−=

i jc c

jijiR cpcpccpCCI
2))()(),(();(

2

∑∫
+

+++
−=

ic x

iiR dxxpcpxcpXCI
2))()(),(();(

2

Hypercube kernel

∑
=

+
−=

in

l

l

i

i xxG
n

cxp
1

2 ),(
1

)|( σ



10

Information Theoretic ApproachInformation Theoretic Approach

� Problem is simple with a hierarchical clustering technique

� Start with n clusters and merging 2 at each 

iterative step.

� Classical similarity matrix is replaced by two matrices:

� Din: account for variation in IR2(C
+;X)

� Dbtw: account for variation in IR2(C
+;C-)

� is merged to      if

� Given matrix of info. potentials between any 2 samples, 

Din and Dbtw are computed easily (see paper).
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Information Theoretic ApproachInformation Theoretic Approach

� Clustering quality depends on kernel parameter sigma. 

� Work reasonably well for many datasets when sigma is selected s.t. 

mean squared error between estimator and true density p(x)  is 

optimized.

� Algorithm complexity

� Matrix of local interactions (info. potentials) between any 2 data 

samples: O(dn*n)

� Calculation of MI’s variation: O(n*n)

� Search and delete element from matrix O(n*log(n))

� Since n-1 steps of merging, overall complexity is O(n*nlog(n)+dn*n)

� Same time as that of a conventional tech. using group-avg similarity
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ExperimentsExperiments

� Compared against 8 other algorithms

� Use 4 syn. datasets and 4 real-world datasets

� Evaluation based on 

� Clustering quality (higher -> better)
� F-measure if knowing true labels

� Dunn Index if not

� Clustering dissimilarity (smaller -> better)
� Normalized Mutual Information

� Jaccard Index
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ExperimentsExperiments
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ExperimentsExperiments

Results on CMU dataset

Table 1: Results on CMU dataset

Table 2: Results on 3 real world datasets

Impact of trade-off factor
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ConclusionsConclusions

� An unsupervised learning technique directly address 

non-linear boundary clustering function

� No assumptions made about data distributions

� Firmly rooted from information theory

� Well performing on various benchmark datasets

� Future work: convert to iterative approach to reduce 

computation time
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Thank you
(Q&A)


