A Hierarchical Information Theoretic Technique for the Discovery of Non Linear Alternative Clusterings

James Bailey and Xuan-Hong Dang

Department of Computer Science and Software Engineering The University of Melbourne, Australia

Introduction

\square Cluster analysis: group "similar" objects into clusters
\square No single solution
\square Examples:

- Documents
- Genes

Cluster by pose or individual (CMU data)?

- Images
=> Equally important, different views
regarding the data

Presentation Outline

\square Introduction
\square Clustering Objectives
\square Information Theoretic Approach
\square Experiments
\square Conclusions
\square Q\&A

Clustering Objectives

\square Many algorithms have been developed!

- Assumptions about data distributions
(implicitly/explicitly) made.
\square We address different aspect:
- No assumptions imposed regarding data distributions
- Clusters' boundary functions can be non-linear!

Clustering Objectives

\square Given a dataset $X=\{\times 1, \ldots, x n\}$ and a reference clustering C^{-}
\square Find C^{+}from X s.t.

- High dissimilarity (from C^{-})
- High quality (strong prob. relationship with X)
\square Purely relying on Information Theory; fully exploit information embedded in data

Information Theoretic Approach

\square Lower bound for probability of error (Fano's theorem):

$$
\operatorname{Pr}\left(c^{+} \neq \widehat{c^{+}}\right) \geq \frac{H\left(C^{+} \mid X\right)-1}{\log \left(\left|C^{+}\right|\right)}=\frac{H\left(C^{+}\right)-I\left(C^{+} ; X\right)}{\log \left(\left|C^{+}\right|\right)}
$$

$\square \quad C^{+}$has little uncertainty given observation X

X, Y are random variables
$H(X)$: Entropy of X
$H(X / Y)$: Cond. entropy of X given Y
$I(X: Y)$: mutual info. btw X and Y
$\square \quad$ Thus, a good clustering if C^{+}and X has strong probabilistic relationship.

Information Theoretic Approach

\square Our dual-objective clustering function:

$$
C^{+}=\underset{C^{+}}{\arg \max }\left\{I\left(C^{+} ; X\right)-\eta I\left(C^{+} ; C^{-}\right)\right\}
$$

- C^{+}and X are statistically dependent
- C^{+}and C^{-}are statistically independent

$\square \quad$ Unfortunately, estimating $I(X ; Y)$ in Shannon's definition is practically hard

$$
\begin{aligned}
I(X ; Y) & =\iint p(x, y) \log \frac{p(x, y)}{p(x) p(y)} d x d y \\
& =D_{K L}(p(x, y) \| p(x) p(y))
\end{aligned}
$$

- Require availability of all variables' distributions
- Numerical integration

Information Theoretic Approach

\square Our task is to optimize MI, rather than computing it exactly.
\square In such cases, a more general divergence can be used:

$$
D(p \| q)=\frac{1}{\alpha(\alpha-1)} \sum_{i=1}^{n}\left(p^{\alpha}\left(x_{i}\right)-\alpha \frac{p\left(x_{i}\right)}{q^{1-\alpha}\left(x_{i}\right)}+(\alpha-1) q^{\alpha}\left(x_{i}\right)\right)
$$

where $\alpha \neq 0,1$.
\square Selecting $\alpha=2$ results in Quadratic Mutual Information (with Renyi entropy):

$$
I_{R_{2}}(X ; Y)=\iint(p(x, y)-p(x) p(y))^{2} d x d y
$$

- In quadratic form, but practically computed from data!

Information Theoretic Approach

\square Why?

- Non-parametric methods for pdfs estimationno assumptions of the underlying densities' form
\square approx. for arbitrary distributions

Hypercube kernel
\square Parzen-windows:

- Placing kernels at data samples and density is sum of kernels

$$
p(x)=\frac{1}{n} \sum_{i=1}^{n} G\left(x-x_{i}, \sigma^{2}\right)
$$

- Note for Gaussian kernel, convolution of 2 Gausses

$$
\int G\left(x-x_{i}, \sigma^{2}\right) G\left(x-x_{j}, \sigma^{2}\right) d x=G\left(x_{i}-x_{j}, 2 \sigma^{2}\right)
$$

- Computing quadratic MI is thus computationally INexpensive when combined with Parzen-windows.

With

$$
p\left(x \mid c_{i}^{+}\right)=\frac{1}{n_{i}} \sum_{l=1}^{n_{i}} G\left(x-x_{l}, \sigma^{2}\right)
$$

$$
\begin{aligned}
& I_{R_{2}}\left(C^{+} ; C^{-}\right)=\sum_{c_{i}^{+}} \sum_{c_{j}^{-}}\left(p\left(c_{i}^{+}, c_{j}^{-}\right)-p\left(c_{i}^{+}\right) p\left(c_{j}^{-}\right)\right)^{2} \\
& I_{R_{2}}\left(C^{+} ; X\right)=\sum_{c_{i}^{+}} \int_{x}\left(p\left(c_{i}^{+}, x\right)-p\left(c_{i}^{+}\right) p(x)\right)^{2} d x
\end{aligned}
$$

Information Theoretic Approach

\square Problem is simple with a hierarchical clustering technique

- Start with n clusters and merging 2 at each iterative step.
- Classical similarity matrix is replaced by two matrices:
$\square \quad D_{\text {in: }}$ account for variation in $I_{R 2}\left(C^{+} ; X\right)$
- $\quad D_{b+w^{\prime}}$ account for variation in $I_{R 2}\left(C^{+} ; C^{-}\right)$
- c_{β}^{+}is merged to c_{α}^{+}if

$$
(\alpha, \beta)=\underset{i, j}{\arg \max }\left\{D_{i n}-\eta D_{b t w}\right\}
$$

- Given matrix of info. potentials between any 2 samples, $D_{\text {in }}$ and D_{b+w} are computed easily (see paper).

Information Theoretic Approach

\square Clustering quality depends on kernel parameter sigma.

- Work reasonably well for many datasets when sigma is selected s.t. mean squared error between estimator and true density $p(x)$ is optimized.
\square Algorithm complexity
- Matrix of local interactions (info. potentials) between any 2 data samples: $O(d n * n)$
- Calculation of MI's variation: $O\left(n^{*} n\right)$
- Search and delete element from matrix $O\left(n^{*} \log (n)\right)$
- Since $n-1$ steps of merging, overall complexity is $O\left(n^{\star} n \log (n)+d n \star n\right)$
- Same time as that of a conventional tech. using group-avg similarity

Experiments

\square Compared against 8 other algorithms
\square Use 4 syn. datasets and 4 real-world datasets

- Evaluation based on
- Clustering quality (higher -> better)
\square F-measure if knowing true labels
\square Dunn Index if not
- Clustering dissimilarity (smaller -> better)
\square Normalized Mutual Information
\square Jaccard Index

Experiments

(b) Syn2 dataset

(c) Syn3 dataset

(b) NACl's alternative clustering

(c) Algo1's alternative clustering
(e) COALA's alternative clustering

(h) CAMI's two alternative clusterings

Experiments

Methods	NMI	JI	F(pose)	F(person)
Algo1	0.31	0.34	0.68	0.87
Algo2	0.33	0.36	0.67	0.84
ADFT	0.29	0.33	0.69	0.89
COALA	0.27	0.32	0.71	0.87
CIB	0.28	0.34	0.69	0.86
Dec-kmeans	0.26	0.32	0.72	0.9
ConvEM	0.28	0.33	0.7	0.89
CAMI	0.24	0.31	0.74	0.89
NACI	$\mathbf{0 . 2}$	$\mathbf{0 . 2 4}$	$\mathbf{0 . 8 1}$	$\mathbf{0 . 9 4}$

Table 1: Results on CMU dataset

Methods	Segmentation			Vehicle			Vowel		
	NMI	JI	DI	NMI	JI	DI	NMI	JI	DI
Algo1	0.51	0.38	1.31	0.38	0.39	1.28	0.42	0.19	1.27
Algo2	0.44	0.3	1.27	0.39	0.44	1.46	0.43	0.21	1.3
ADFT	0.46	0.31	1.3	0.35	0.37	1.42	0.48	0.33	$\mathbf{1 . 4 1}$
COALA	0.44	0.29	1.25	0.29	0.35	1.51	0.36	0.27	1.29
CIB	0.45	0.32	1.32	0.33	0.41	1.39	0.41	0.26	1.25
Deckm	0.39	0.29	1.26	0.26	0.36	1.4	0.27	0.17	1.26
ConvEM	0.41	0.3	1.27	0.25	0.34	1.41	0.31	0.19	1.23
CAMI	0.31	0.27	1.44	0.23	0.32	$\mathbf{1 . 5 3}$	0.24	0.11	1.38
NACI	$\mathbf{0 . 2 6}$	$\mathbf{0 . 2 5}$	$\mathbf{1 . 4 6}$	$\mathbf{0 . 2 1}$	$\mathbf{0 . 2 8}$	1.51	$\mathbf{0 . 2 2}$	$\mathbf{0 . 1 1}$	1.38

Table 2: Results on 3 real world datasets

Conclusions

\square An unsupervised learning technique directly address non-linear boundary clustering function
\square No assumptions made about data distributions
\square Firmly rooted from information theory
\square Well performing on various benchmark datasets
\square Future work: convert to iterative approach to reduce computation time

Thank you (Q\&A)

