Combining Predictions for Accurate Recommender Systems

[KDD 2010, July 25–28, 2010, Washington D.C., USA]

Michael Jahrer Andreas Töscher Robert Legenstein

Outline

- Motivation
- Collaborative Filtering Algorithms
- Blending Algorithms
- Experimental Results on Netflix Data
- Application example: KDD Cup 2010

Motivation

- <u>Accurate recommendations</u> may increase the sales
- Guides users to the products, they want to purchase
- Better cross-selling
- Increasing user activity

amazon.com	Hello, Michael Jahrer. We have recomm Michael's Amazon.com	nendations for you. (Not Michael?) Deals Gifts & Wish Lists Gift Cards					Your Account Help
Shop All Departments 🛛 🕞	Search All Departments					💿 📜 Cart	Wish List 🕑
Your Amazon.com	Your Browsing History	Recommended For You	Rate These Items	Improve Your Recommendations	Your Profile	Your Communities	Learn More
Michael's Amazon.com > Reco If you're not Michael Jahrer, click here.							
Just For Today	These recommendations are based on it	ems you own and more.					
Browse Recommended	view: All New Releases Coming Soon						More results 💽
Recommendations All Electronics	he Devid 1.1	all Street: Math, Machines and Wired Markets .einweber (June 9, 2009)					
Baby	Nerds Available from	n <u>these sellers</u> .					
Beauty Books Camera & Photo				See all buying options Add to Wish List			
Clothing & Accessories Computer & Accessories	Million University (Markov Devisiti Executive Antonia						
Grocery & Gourmet Food Health & Personal Care Home Improvement	I own it Not interested x 5 Recommended based on an item no	ななななな。Rate this item longer in our catalog and more (<u>Fix this</u>)					

Collaborative filtering

- All algorithms have been successfully applied on the Netflix Prize dataset
 - SVD Singular Value Decomposition
 - KNN K-Nearest Neighbors (item item)
 - AFM Asymmetric Factor Model
 - RBM Restricted Boltzmann Machines
 - GE Global Effects

SVD

u...user *i*...item \hat{r}_{ui} ...prediction p ...item feature q ...user feature

- Very popular since the Netflix Prize
- Accurate and good scaling properties

$$\hat{r}_{ui} = \boldsymbol{p}^T \boldsymbol{q} = \begin{array}{c} \boldsymbol{p}_0 \ \boldsymbol{p}_1 \ \boldsymbol{p}_3 \end{array} \star \begin{array}{c} \boldsymbol{q}_0 \\ \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \end{array}$$

item feature user feature

KNN

- Natural approach
- Predict a rating $\hat{r_{ui}}$
 - Find k-best correlating items R(u,i)
 - Make a weighted sum

$$\hat{r_{ui}} = \frac{\sum_{j \in R(u,i)} C_{ij} r_{uj}}{\sum_{j \in R(u,i)} |C_{ij}|}$$

• Quadratic runtime for 1x prediction $O(N^2)$ N = #items

u...user i...item $\hat{r_{ui}}$...prediction R(u,i)...item set c_{ij} ...corr between item i and j r_{ui} ...user rating

AFM

Like SVD

- A user is represented via his rated items N(u)
- Over the second s

$$\hat{r}_{ui} = \boldsymbol{p}^{T} \left(\frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} \boldsymbol{q}_{j} \right) = \boldsymbol{p}_{0} \boldsymbol{p}_{1} \boldsymbol{p}_{3} \star \frac{1}{\sqrt{3}} \left(\begin{pmatrix} \boldsymbol{q}_{0} \\ \boldsymbol{q}_{1} \\ \boldsymbol{q}_{2} \end{pmatrix} + \begin{pmatrix} \boldsymbol{q}_{0} \\ \boldsymbol{q}_{1} \\ \boldsymbol{q}_{2} \end{pmatrix} \right)$$

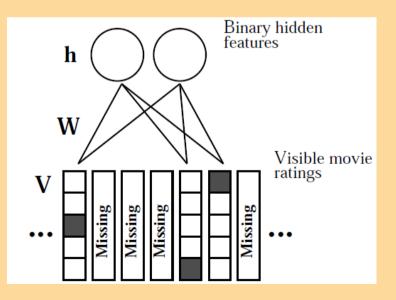
item feature user feature (virtual)

u...user *i*...item $\hat{r_{ui}}$...prediction N(u)...ratings of u p ...item feature q ...asym. item feature

RBM

u...user *i*...item $\hat{r_{ui}}$...prediction

- Two-layer undirected graphical model
- Learning is performed with "contrastive divergence"
- RBM reconstructs the visible units
- Predictions $\hat{r_{ui}}$ are calculated over rating probabilites



[R.Salakhutdinov, A.Mnih, G.Hinton : Restricted Boltzmann machines for collaborative filtering, ICML '07]

Global Effects

- Calculate "hand-crafted" features for users and items
- Equivalent to SVD with either fixed user or item features

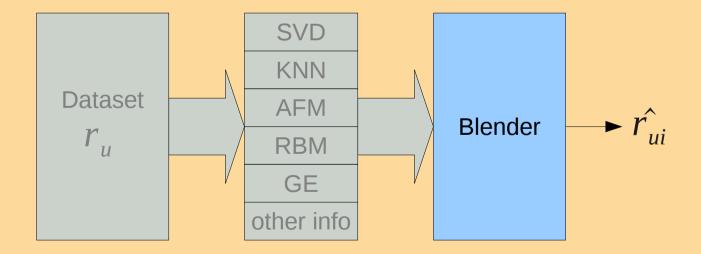
#	effect	$\operatorname{shrinkage}$
1	Movie effect	α_1
2	User effect	α_2
3	User effect: user x sqrt(time(user))	α_3
4	User effect: user x sqrt(time(movie))	α_4
5	Movie effect: movie x sqrt(time(movie))	α_5
6	Movie effect: movie x sqrt(time(user))	α_6
7	User effect: user x average(movie)	α_7
8	User effect: user x votes(movie)	α_8
9	Movie effect: movie x average(user)	α_9
10	Movie effect: movie x votes(user)	α_{10}

[A.Töscher, M.Jahrer, R.Bell : The BigChaos Solution to the Netix Grand Prize, 2009]

Blending

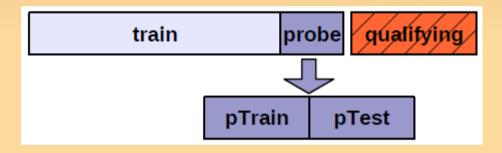
u...user i...item $\hat{r_{ui}}$...prediction N(u)...ratings of u

- Apply a supervised learner for combining predictions
- Error: RMSE
- Additional information: |N(u)| (the "support")



Evaluation schema

- Dataset for CF algorithms: Netflix (10⁸ ratings, except probe)
- Dataset for Blending: probe (1.4M ratings)
- 50/50 random split of probe: pTrain, pTest



Blending

- **pTrain**: training set
- **pTest**: test set
- qualifying: another test set

commende

Used CF algorithms

	nr	name	RMSE	description
	1	AFM-1	0.9362	AFM, 200 features, $\eta = 1e-3$, $\lambda =$
				$1e-3$, learnrate η is multiplied with 0.95 from epoch 30, trained for 120
				epochs
	2	AFM-2	0.9231	AFM, 2000 features, $\eta = 1e-3$, $\lambda =$
4x SVD				2e-3, trained for 23 epochs, based
- 4× 3VD	3	AFM-3	0.9340	on residuals of KNN-4. AFM, 40 features, $\eta = 1e-4$, $\lambda =$
	J	AT M-5	0.5540	1e-3, trained for 96 epochs
	4	AFM-4	0.9391	AFM, 900 features, $\eta = 1e-3$, $\lambda =$
4x AFM		OD 1	0.00000	1e-2, trained for 43 epochs
	5	GE-1	0.9079	GE, 16 effects, based on residuals of KNN-1
	6	GE-2	0.9710	GE, 16 effects, on raw ratings
4x KNN	7	GE-3	0.9443	GE, 16 effects, based on residuals of
	8	GE-4	0.9209	KNN-4 GE(with time), 24 effects, based on
	0	GE-4	0.9209	residuals of AFM-2
	9	KNN-1	0.9110	residuals of AFM-2 KNN item, Pearson correlation,
2x RBM				k = 24 neighbors, based on resid-
	10	KNN-2	0.8904	uals of AFM-1 KNN item, Set correlation [20], $k =$
				122, based on residuals from a chain
4x GE				of algorithms RBM-KNN-GE(with
= 4X GL	11	L'AINL O	0.0000	time)
	11	KNN-3	0.8970	KNN item, Pearson correlation, k = 55, based on residuals of a dis-
				$\kappa = 55$, based on residuals of a dis- crete RBM model with $nHid = 150$
log(support) as additional input	12	KNN-4	0.9463	$\frac{\text{crete RBM model with } nHid = 150}{\text{KNN item, Pearson correlation,}}$
	10	DDM 1	0.0409	k = 21, based on residuals of GE-2
	13	RBM-1	0.9493	RBM, discrete, $nHid = 10$, $\eta = 0.002$, $\lambda = 0.0002$
10 prodictors	14	RBM-2	0.9123	RBM, discrete, $nHid = 250$, $\eta =$
19 predictors				$0.002, \lambda = 0.0004$
	15	SVD-1	0.9074	SVD, 300 features, $\eta = 8e-4$, $\lambda =$
				0.01, trained for 158 epochs, based on residuals of 1GE (item mean)
	16	SVD-2	0.9172	SVD, 20 features, $\eta = 0.002$, $\lambda =$
				0.02, trained for 158 epochs, based
				on residuals of 1GE (item mean)
	17	SVD-3	0.9033	SVD, 1000 features, with adaptive
Composer and train and any readial value of atlease				user factors (AUF [20]), $\eta = 0.001$, $\lambda = 0.015$, trained for 158 epochs
Some are trained on residuals of others	18	SVD-4	0.8871	$\lambda = 0.015$, trained for 158 epochs SVD extended, 150 features, indi-
				vidual learn rates η and regulariza-
				tion constants λ are automatically
	10			tuned on the probe set [20].
acompanda	19	support	-	The number of ratings per user; we take the natural logarithm of the
commendo				support as additional input.
		I		

Blending (supervised setup)

F = 19

N = 704197

- $X \dots$ train set (N x F matrix)
- x_{ij} ... feature value i...sample, j...feature
- *y* ... targets (1...5 ratings)
- *p* ... predictions
- $\Omega(\mathbf{x})$... model (the "blender")
- Error function

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\Omega(\mathbf{x}) - y_i)^2}$$

What is inside X ? (first 20 rows)

								Pro	edictor	s									Target
4,12	4,18	3,74	4,08	4,43	4,11	4,10	4,11	4,32	4,61	4,63	4,11	4,28	4,53	4,67	4,53	4,20	4,18	4,55	5
3,62	3,79	3,73	3,81	3,60	3,68	3,76	3,76	3,62	2,72	2,75	3,69	3,62	2,43	2,26	1,68	3,12	3,16	6,18	1
3,22	3,22	3,55	3,59	3,05	3,67	3,48	3,28	3,22	3,16	3,17	3,70	4,04	3,10	3,32	3,74	2,94	2,87	4,30	1
3,35	4,15	3,26	3,69	3,60	2,99	4,09	4,16	3,52	3,94	3,98	4,17	4,59	3,71	4,23	4,18	3,68	3,97	4,06	4
4,11	3,93	3,84	4,01	3,94	3,58	3,85	3,83	4,04	3,81	3,94	3,89	3,82	3,94	3,82	3,80	3,73	3,86	5,82	3
4,22	4,55	4,09	4,20	4,42	4,15	4,38	4,55	4,45	4,19	4,21	4,56	4,15	4,23	4,24	4,24	4,15	4,26	4,49	4
3,64	3,93	3,65	3,59	3,82	3,62	3,96	3,98	3,82	3,86	3,80	3,74	3,51	3,77	3,91	4,24	3,83	4,00	5,09	3
2,50	2,61	2,60	2,64	2,34	2,84	2,75	2,61	2,29	2,32	2,32	2,86	3,10	2,63	2,57	2,47	2,57	2,75	5,49	1
3,44	2,98	3,30	3,55	3,32	3,13	3,09	3,15	3,45	3,10	3,27	3,08	3,38	3,00	3,39	3,34	2,99	3,32	3,43	4
3,75	3,91	3,73	3,82	3,90	3,97	3,94	3,90	3,92	3,80	3,76	4,02	3,84	3,98	4,29	4,30	3,98	4,13	5,45	3
4,74	5,00	4,25	4,77	4,88	4,01	4,41	4,92	4,81	4,51	4,58	4,45	4,12	4,49	4,13	4,25	4,42	4,35	3,30	5
3,79	3,80	4,03	3,86	3,72	4,02	3,87	3,87	3,79	3,91	4,03	3,94	4,17	3,82	3,98	3,75	3,72	3,75	4,57	5
4,41	4,29	4,27	4,20	4,30	4,19	4,32	4,29	4,40	4,06	4,11	4,35	4,09	4,25	3,96	4,33	4,35	4,10	5,68	5
3,37	3,51	3,35	3,44	3,44	3,77	3,74	3,55	3,36	3,23	3,25	3,78	3,46	2,94	3,39	3,54	3,46	3,36	5,02	4
3,48	3,70	3,16	3,37	3,52	3,89	3,62	3,62	3,41	3,27	3,33	3,89	2,90	3,18	3,49	3,60	3,34	3,46	5,56	4
3,12	3,20	2,81	2,98	3,26	3,04	2,99	3,22	3,24	2,56	2,60	3,04	2,81	2,49	2,53	2,39	2,56	2,83	7,07	3
2,98	3,18	2,82	2,84	3,41	3,31	3,35	3,15	3,45	3,25	3,34	3,54	2,52	3,23	3,60	3,03	3,21	3,34	5,33	4
3,79	4,97	4,12	3,37	4,75	3,96	4,89	5,00	4,69	4,84	4,86	4,61	4,15	4,62	4,73	4,69	4,79	4,82	3,14	1
3,65	4,24	3,75	3,71	3,85	3,95	4,14	4,29	3,74	3,69	3,66	4,07	3,65	3,95	3,66	4,22	3,10	3,59	5,78	4
4,01	3,55	3,47	3,20	4,00	3,36	3,42	3,55	3,95	3,67	3,60	3,35	3,92	4,15	3,57	4,22	3,67	3,76	4,80	4
4,01	4,22	4,15	4,05	4,57	4,03	4,18	4,12	4,45	4,47	4,35	4,01	4,07	4,31	4,60	4,77	4,38	4,59	3,33	5

... 700k rows

(X=train set)

Linear Regression

• Model:
$$\Omega(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

- Training: $\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- Determined by cross-validation λ =0.000004

Sector Sector

regression coefficients

W	i
---	---

-0.083	AFM-1 (0.9362)
-0.084	AFM-2 (0.9231)
-0.077	AFM-3 (0.9340)
+0.088	AFM-4 (0.9391)
+0.098	GE-1 (0.9079)
-0.003	GE-2 (0.9710)
-0.081	GE-3 (0.9443)
+0.176	GE-4 (0.9209)
+0.029	KNN-1 (0.9110)
+0.272	KNN-2 (0.8904)
-0.094	KNN-3 (0.8970)
+0.010	KNN-4 (0.9463)
+0.025	RBM-1 (0.9493)
+0.066	RBM-2 (0.9123)
-0.008	SVD-1 (0.9074)
+0.094	SVD-2 (0.9172)
+0.080	SVD-3 (0.9033)
+0.227	SVD-4 (0.8871)
-0.008	log(support)
+3.673	const. 1

commende

Binned Linear Regression

Lin.Reg Baseline: 0.8752

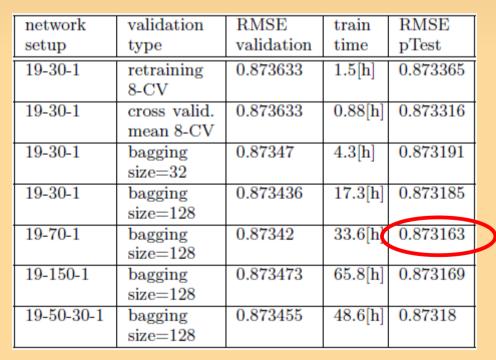
- Model: $\Omega(\mathbf{x}) = \mathbf{x}^T \mathbf{w}_b$ b ... bin, each \mathbf{w}_b per bin
- Second Fast, more accurate than LR
- 3 binning types
 - support: Number of ratings per user
 - date: Day of the rating
 - frequency: Number of votes from user u on day of the rating

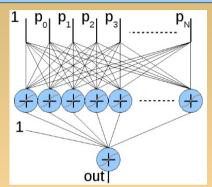
type	2 bins	5 bins	10 bins	20 bins
support	0.874877	0.874741	0.874744	0.87485
	(V:0.87517)	(V:0.8750)	(V:0.87499)	(V:0.87513)
date	0.875212	0.875195	0.87527	0.87537
	(V:0.87545)	(V:0.87541)	(V:0.87544)	(V:0.87558)
frequency	0.87518	0.87510	0.87512	0.87517
	(V:0.87537)	(V:0.87521)	(V:0.8752)	(V:0.87531)

→ support binning works best (5 bins)

Neural Network

- Stochastic gradient descent
- Decrease initial learning rate
- Bagging improves the accuracy
- Section Fast and accurate predictions
- Buddle Long training time



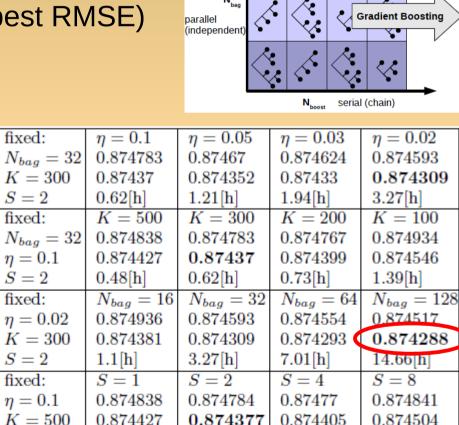


Bagged Gradient Boosted Decision Tree

Prediction is generated by

- Splits in a single tree are greedy (best RMSE)
- Sum of trees (gradient boosting)
- Averaging many chains (bagging)
- Lower RMSE when
 - Smaller learnrate
 - Larger bagging size
- Dataset dependent
 - Max. Number of leaves
 - Subspace size

commendo



0.42[h]

N_{bar}

parallel

0.48[h]

 $N_{bag} = 32$

Lin.Reg Baseline: 0.8752

~

Cradient Boosting

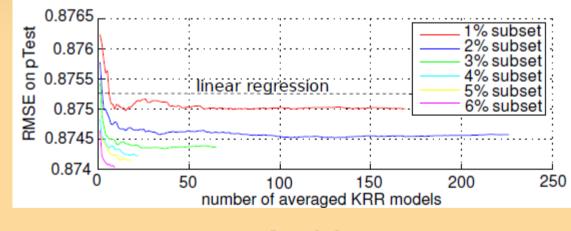
1.11[h]

0.68[h]

Kernel Ridge Regression

Lin.Reg Baseline: 0.8752

- Cannot be applied to all 700k training samples
 - O(N³) runtime, O(N²) memory
- Average over smaller trainsets (random x % subset)



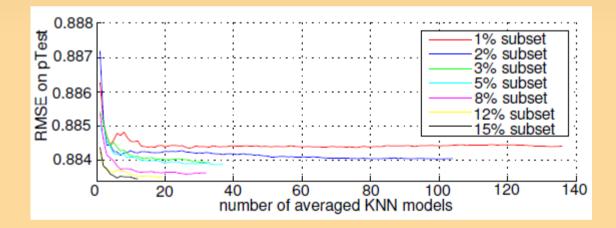
RMSE: 0.874

1% subset: 7k samples 6% subset: 42k samples

K-Nearest Neighbors Blending

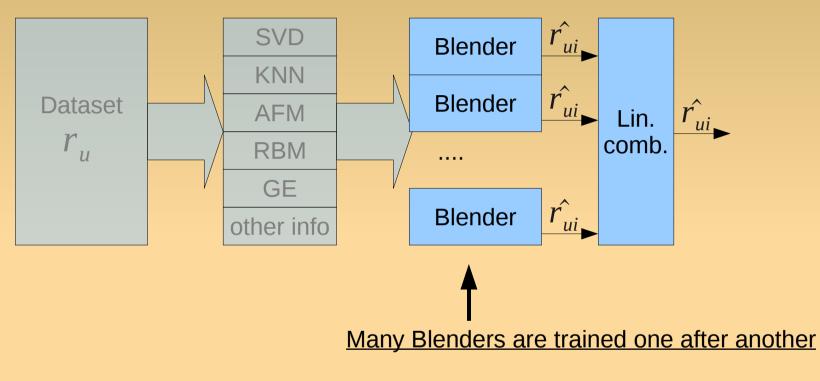
Lin.Reg Baseline: 0.8752

- Cannot be applied to all 700k training samples
 - O(N²) runtime, O(N²) memory
- Does not work (worse RMSE)



RMSE: 0.883

Bagging with Neural Networks, Polynomial Regression and GBDT



- → Error feedback for stop training: RMSE of the linear combination
- → Linear Combination is calculated on the out-of-bag estimate

Bagging with Neural Networks, Polynomial Regression and GBDT

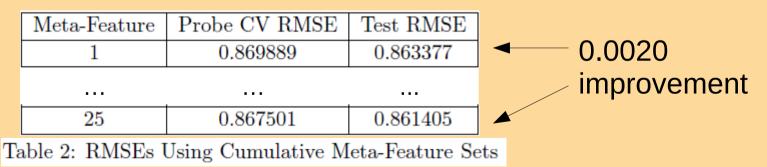
Lin.Reg Baseline: 0.8752

Stagewise optimization of a lin. combination of different learners

model	RMSE	weight	parameters
	(blend)		_
const. 1	-	-0.014	-
NN	0.87345	0.170	19-100-1, $\alpha = 3.6$, $\beta = 3.0$, $\eta =$
	(0.873445)		$5e-4, \eta^{(-)} = 5e-7, 870$ epochs,
			44.4[h]
GBDT	0.874111	0.054	$S = 20, K = 50, \eta = 0.1, 226$
	(0.873387)		epochs, randomSplitPoint, 6.6[h]
GBDT	0.874603	0.098	$S = 2, K = 300, \eta = 0.02, 267$
	(0.873384)		epochs, optSplitPoint, 8.1[h]
PR	0.874358	0.141	order=2, $\lambda = 2.4e-6$, with cross
	(0.87336)		interactions, 1.9[h]
PR	0.895951	-0.033	order=3, $\lambda = 0.054$, no cross in-
	(0.873351)		teractions, 0.3[h]
NN	0.87345	0.202	19-100-1, $\alpha = 2, \beta = 3.0, \eta =$
	(0.873296)		$5e-4, \eta^{(-)} = 5e-7, 998$ epochs,
			47.1[h]
NN	0.873449	0.371	19-50-30-1, $\alpha = 2, \beta = 3.0, \eta =$
	(0.873227)		$5e-4, \eta^{(-)} = 5e-7, 952$ epochs,
			49.8[h]
blend	0.873227		total train time: 158.2[h]
	pTest:0.87	297	total prediction time $4.5[h]$

Results on qualifying set (the "real" test set)

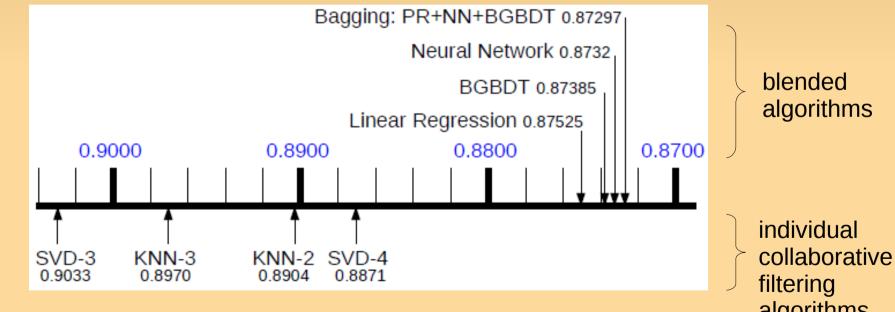
 Netflix Prize competitors use linear regression with meta features



[J. Sill, G. Takacs, L. Mackey, and D. Lin. : Feature-weighted linear stacking, 2009]

Summary

- The blend of many CF algorithms improves the accuracy!
- Neural network (as blender) is the best tradeoff between training time and accuracy

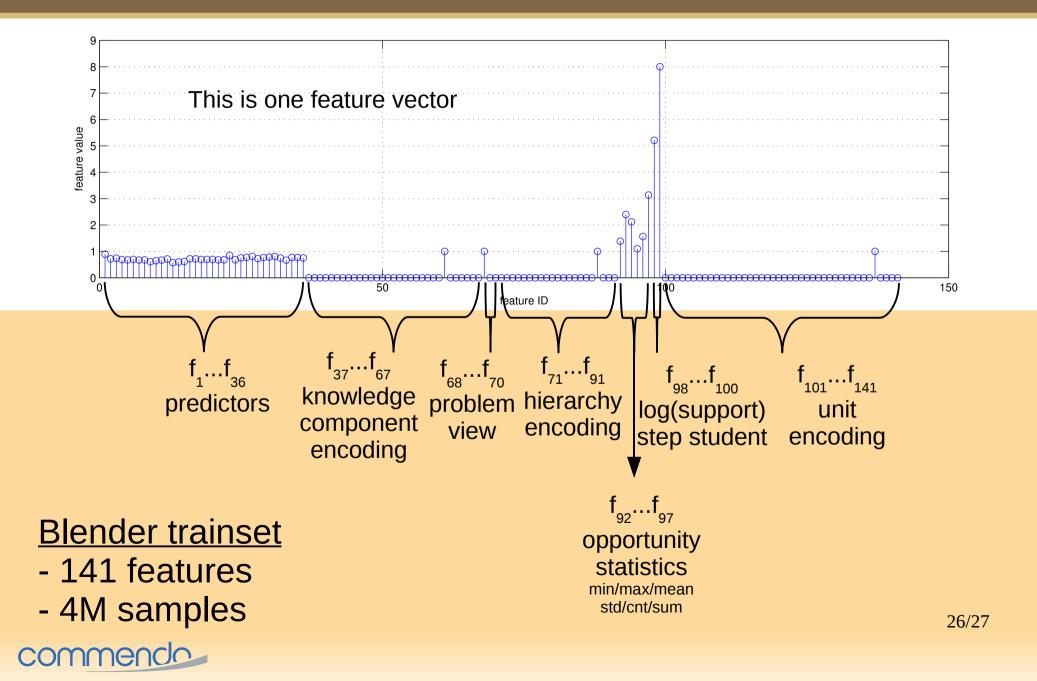


Software is Open Source!

- The data and the implementation can be found on: <u>http://elf-project.sourceforge.net/</u>
- Many examples are provided there

Happy hacking 🙂

Application example: KDD Cup 2010



Thank you for your attention!

Michael Jahrer commendo research & consulting GmbH www.commendo.at

27/27