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Outline
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 Collaborative Filtering Algorithms

 Blending Algorithms

 Experimental Results on Netflix Data

 Application example: KDD Cup 2010
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Motivation

 Accurate recommendations may increase the sales

 Guides users to the products, they want to purchase

 Better cross-selling

 Increasing user activity
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Collaborative filtering

 All algorithms have been successfully applied on the 
Netflix Prize dataset

 SVD – Singular Value Decomposition

 KNN – K-Nearest Neighbors (item - item)

 AFM – Asymmetric Factor Model

 RBM – Restricted Boltzmann Machines

 GE – Global Effects
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SVD

 Very popular since the Netflix Prize

 Accurate and good scaling properties
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KNN

 Natural approach

 Predict a rating 
 Find k-best correlating items

 Make a weighted sum 

 Quadratic runtime for 1x prediction   O(N²)   N = #items
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AFM

 Like SVD

 A user is represented via his rated items

 ☺ New users can be integrated without re-training 
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RBM

 Two-layer undirected graphical model

 Learning is performed with ”contrastive divergence”

 RBM reconstructs the visible units

 Predictions        are calculated over rating probabilitesrui

[R.Salakhutdinov, A.Mnih, G.Hinton : Restricted Boltzmann machines for collaborative filtering, ICML '07]
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Global Effects

 Calculate ”hand-crafted” features for users and items

 Equivalent to SVD with either fixed user or item features

[A.Töscher, M.Jahrer, R.Bell : The BigChaos Solution to the Netix Grand Prize, 2009]
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Blending

 Apply a supervised learner for combining predictions

 Error: RMSE

 Additional information:              (the ”support”)
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Evaluation schema

 Dataset for CF algorithms: Netflix (108 ratings, except probe)

 Dataset for Blending: probe (1.4M ratings)

 50/50 random split of probe: pTrain, pTest

Blending

 pTrain: training set

 pTest: test set

 qualifying: another test set
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Used CF algorithms

 4x SVD

 4x AFM

 4x KNN

 2x RBM

 4x GE

 log(support) as additional input

19 predictors

 Some are trained on residuals of others
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Blending (supervised setup)

      … train set (N x F matrix)

      … feature value   i...sample,  j...feature

      … targets (1...5 ratings)

      … predictions

            … model (the ”blender”)

 Error function
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What is inside X ?
(first 20 rows)

(X=train set)

...................
… 700k rows
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Linear Regression

 Model:

 Training: 

 ☺ Fast

 RMSE
pTest

:   0.87525

             →  Baseline

x =xT w

w=XT X I −1XT y 

regression
coefficients

w i

Determined by cross-validation

    =0.000004
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Binned Linear Regression

 Model:                              b … bin, each       per bin

 ☺ Fast, more accurate than LR

 3 binning types
 support: Number of ratings per user

 date: Day of the rating

 frequency: Number of votes from user u on day of the rating

→ support binning works best (5 bins)

x =xT wb wb

Lin.Reg Baseline: 0.8752
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Neural Network

 Stochastic gradient descent

 Decrease initial learning rate

 Bagging improves the accuracy

 ☺ Fast and accurate predictions

 ☹ Long training time

Lin.Reg Baseline: 0.8752
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Bagged Gradient Boosted Decision Tree

 Prediction is generated by
 Splits in a single tree are greedy (best RMSE)

 Sum of trees (gradient boosting)

 Averaging many chains (bagging)

 Lower RMSE when
 Smaller learnrate

 Larger bagging size

 Dataset dependent
 Max. Number of leaves

 Subspace size

Lin.Reg Baseline: 0.8752
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Kernel Ridge Regression

 Cannot be applied to all 700k training samples
 O(N³) runtime, O(N²) memory

 Average over smaller trainsets (random x % subset)

Lin.Reg Baseline: 0.8752

1% subset: 7k samples
6% subset: 42k samples

RMSE: 0.874
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K-Nearest Neighbors Blending

 Cannot be applied to all 700k training samples
 O(N²) runtime, O(N²) memory

 Does not work (worse RMSE)

Lin.Reg Baseline: 0.8752

RMSE: 0.883
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Bagging with Neural Networks, Polynomial 
Regression and GBDT

SVD

KNN

AFM

RBM

GE

Dataset

other info

Blender rui

ru
Blender

Blender

....

rui

rui

Lin.
comb.

rui

Many Blenders are trained one after another

→ Error feedback for stop training:
    RMSE of the linear combination

→ Linear Combination is calculated on the
    out-of-bag estimate
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Bagging with Neural Networks, Polynomial 
Regression and GBDT

 Stagewise optimization of a lin. combination of different learners

Lin.Reg Baseline: 0.8752
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Results on qualifying set (the ”real” test set)

 19-30-1 neural network: RMSE=0.8664

 Bagging with 7 models: RMSE=0.8660

 Netflix Prize competitors use linear regression 
with meta features

Lin.Reg Baseline: 0.8681

0.0021
improvement

[J. Sill, G. Takacs, L. Mackey, and D. Lin. : Feature-weighted linear stacking, 2009]

…                    …                    ...

0.0020
improvement
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Summary

 The blend of many CF algorithms improves the accuracy!

 Neural network (as blender) is the best tradeoff between 
training time and accuracy

individual
collaborative
filtering
algorithms

blended
algorithms
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Software is Open Source!

 The data and the implementation can be found on:
http://elf-project.sourceforge.net/

 Many examples are provided there

Happy hacking ☺

http://elf-project.sourceforge.net/
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Application example: KDD Cup 2010

Blender trainset
- 141 features
- 4M samples
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Thank you for your attention!

Michael Jahrer
commendo research & consulting GmbH

www.commendo.at

http://www.commendo.at/
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