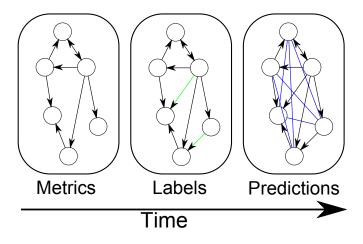
New Perspectives and Methods in Link Prediction

Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla


KDD 2010, Washington, D.C.

25 July 2010

1/23

Introduction

2 / 23

イロン イロン イヨン イヨン 三日

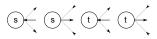
Data

phone (weighted, directed)- a stream of event records from a major non-American cellular phone service provider

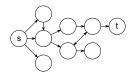
- Weeks 1-5
 - 5.5M nodes
 - 19.7M links
- Week 6
 - 4.4M nodes
 - 8.5M links

condmat (weighted, undirected) - a physics collaboration data set from Mark Newman

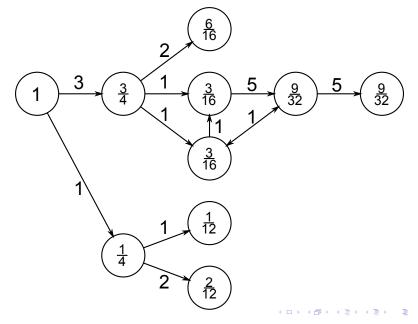
- Years 1995-1999
 - 13.9K nodes
 - 80.6K links
- Year 2000
 - 8.5K nodes
 - 41.0K links

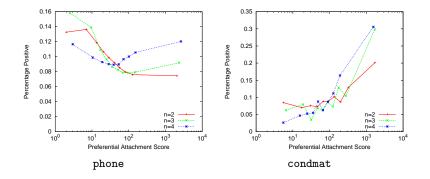

イロト 不得 トイヨト イヨト

	phone	condmat
Assortativity Coef.	0.293	0.177
Average Clustering Coef.	0.187	0.642
Mean Degree	3.88	6.42
Median Degree	3	4
Number of SCCs	1,023,044	652
Largest SCC	4,293,751	15,081
Largest SCC Diameter	25	19


3

Single-Metric Methods


- Node-based
 - Degree
 - Weight
 - Centrality
- Neighbor-based
 - Common Neighbors
 - Jaccard's Coefficient
 - Adamic/Adar
- Path-based
 - Katz
 - Rooted PageRank
 - Hitting Time
 - Commute Time



PropFlow

5 / 23

Local and Global Influences

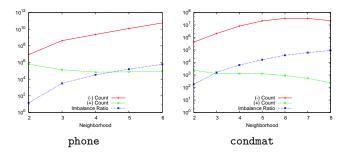
Feature Listing

Name	Parameters	
In-Degree(<i>i</i>)	-	
In-Volume(<i>i</i>)	-	
In-Degree(j)	-	
In-Volume(<i>j</i>)	-	
Out-Degree(i)	-	
Out-Volume(<i>i</i>)	-	
Out-Degree(j)	-	
Out-Volume(<i>j</i>)	-	
Common Nbrs(<i>i</i> , <i>j</i>)	-	
Max. Flow (i,j)	$\ell = 5$	
Shortest Paths(<i>i</i> , <i>j</i>)	$\ell=5$	
PropFlow(<i>i</i> , <i>j</i>)	$\ell = 5$	
Adamic/Adar(i,j)	-	
Jaccard's $Coef(i,j)$	-	
Katz(<i>i</i> , <i>j</i>)	$\ell=$ 5, $\beta=0.005$	
Pref Attach(<i>i</i> , <i>j</i>)	-	

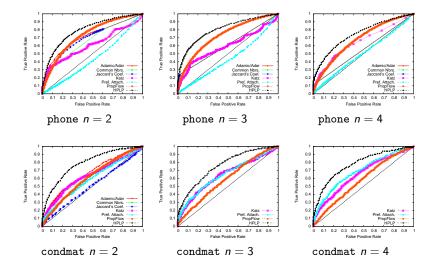
<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > 23

Many networks are built from data streams. We are inundated with new data, which eventually becomes truth data.

- Many networks are built from data streams. We are inundated with new data, which eventually becomes truth data.
- The classification step takes less time than gathering topological measures.


- Many networks are built from data streams. We are inundated with new data, which eventually becomes truth data.
- The classification step takes less time than gathering topological measures.
- Networks have different underlying mechanisms driving the formation of links.

- Many networks are built from data streams. We are inundated with new data, which eventually becomes truth data.
- The classification step takes less time than gathering topological measures.
- Networks have different underlying mechanisms driving the formation of links.
- We can capture and describe interrelated mechanisms of link formation.


- Many networks are built from data streams. We are inundated with new data, which eventually becomes truth data.
- The classification step takes less time than gathering topological measures.
- Networks have different underlying mechanisms driving the formation of links.
- We can capture and describe interrelated mechanisms of link formation.
- We gain the opportunity to focus on differentiating the class boundaries.

Imbalance and Geodesic Distance

The class imbalance ratio for link prediction in a sparse network is lower-bounded by the number of vertices in the network. **Solution: Geodesic decomposition and undersampling!**

ROC Results

Conclusions

- Links form according to a competition between local and global influences, and the dominant factor depends upon the network.
- We recommend PropFlow on communication networks such as phone when supervised predictors are somehow infeasible.
- HPLP outperforms single methods by 30% AUROC using a combination of undersampling and ensembles, and it requires less time than feature construction.
- Resulting data sets present a whole new world of imbalanced data challenges. Typical techniques work poorly or not at all.

Acknowledgments

Research sponsored by:

- Army Research Laboratory (ARL) Cooperative Agreement Number W911NF-09-2-0053
- National Science Foundation (NSF) Grant BCS-0826958

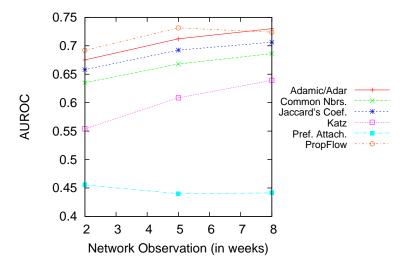
Thanks to Dawei (David) Yin for pointing out an error in the transcription of Algorithm 1 in the proceedings. The transcription error has been fixed. For a corrected version, please see:

http://nd.edu/~dial/papers/KDD10.pdf

Interaction

Questions, comments, or input?

AUROC Results



Evaluation

- Link prediction papers often report results in terms of precision and recall.
- This requires selecting arbitrary thresholds (e.g. 50% probability).
- We use threshold-agnostic measures because any threshold is domain-specific or entirely unknown.

Data and Evaluation: Network Saturation

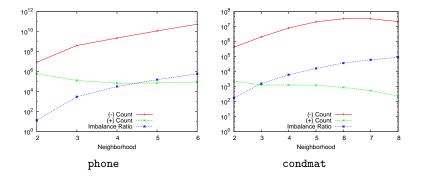
Feature Listing

Name	Parameters	HPLP	HPLP+
In-Degree(<i>i</i>)	-	\checkmark	\checkmark
In-Volume(<i>i</i>)	-	\checkmark	\checkmark
In-Degree(<i>j</i>)	-	\checkmark	\checkmark
In-Volume(<i>j</i>)	-	\checkmark	\checkmark
Out-Degree(<i>i</i>)	-	\checkmark	\checkmark
Out-Volume(<i>i</i>)	-	\checkmark	\checkmark
Out-Degree(j)	-	\checkmark	\checkmark
Out-Volume(<i>j</i>)	-	\checkmark	\checkmark
Common Nbrs(<i>i</i> , <i>j</i>)	-	\checkmark	\checkmark
Max. Flow (i,j)	<i>l</i> = 5	\checkmark	\checkmark
Shortest Paths(<i>i</i> , <i>j</i>)	<i>l</i> = 5	\checkmark	\checkmark
PropFlow(<i>i</i> , <i>j</i>)	<i>l</i> = 5	\checkmark	\checkmark
Adamic/Adar(i,j)	-		\checkmark
Jaccard's Coef(<i>i</i> , <i>j</i>)	-		\checkmark
Katz(<i>i</i> , <i>j</i>)	$I = 5, \ \beta = 0.005$		\checkmark
Pref Attach(<i>i</i> , <i>j</i>)	-		\checkmark

Imbalance

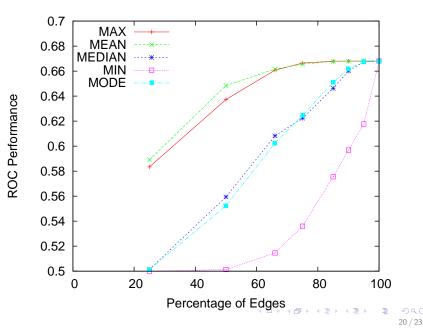
Definition

Let a network G = (V, E) be described as *sparse* if it maintains the property |E| = k|V| for some constant $k \ll |V|$.


Theorem

The class imbalance ratio for link prediction in a sparse network G is $\Omega\left(\frac{|V|}{1}\right)$ when at most |V| nodes may join the network.

Proof.


The number of possible links in G is $|V|^2$. Then the number of missing links, $|E^C|$, is $|V|^2 - k|V| \in \Theta(|V|^2)$. Let |V'| nodes and |E'| links join the network. Since $|V| + |V'| \le 2|V| \in \Theta(|V|)$, $|E| + |E'| \in \Theta(|V|)$, which requires that $|E'| \in O(|V|)$. The number of positives is |E'|, and there are $|(E \cup E')^C| \in \Theta(|V|^2)$ negatives. This gives us $\frac{\Theta(|V|^2)}{O(|V|)}$, equivalent to $\Omega\left(\frac{|V|}{1}\right)$, as the class ratio.

Graph Distance and Imbalance

<ロト < 部ト < 注ト < 注ト 注 の Q (~ 19/23

Variance Reduction and Ensembles

PropFlow - Erratum

Require: network G = (V, E), node v_s , max length *l* **Ensure:** score S_{sd} for all $n \leq l$ -degree neighbors v_d of v_s

1: insert v_s into Found 2: push v_s onto NewSearch	
3: insert $(v_s, 1)$ into S	
4: for CurrentDegree \leftarrow 0 to 1 do	
5: OldSearch \leftarrow NewSearch	
 5: OldSearch ← NewSearch 6: empty NewSearch 7: while OldSearch is not empty do 	
7: while OldSearch is not empty do	
8: pop v_i from OldSearch	
9: find NodeInput using v _i in S	
10: $SumOutput \leftarrow 0$	
11: for each v_i in neighbors of v_i de)
12: add weight of eij to SumOut	out
13: end for	
14: $Flow \leftarrow 0$ 15: for each v; in neighbors of v; defined by the second	
15: for each v_j in neighbors of v_i de)
16: $w_{ij} \leftarrow \text{weight of } e_{ij}$	
17: Flow \leftarrow NodeInput $\times \frac{w_{l}}{SumO}$	i utput
18: insert or sum $(v_i, Flow)$ into	S
19: end for	
20: if v _i is not in Found then	
21: insert vi into Found	
22: push v; onto NewSearch	
23: end if	
24: end while	
25: end for	

Require: network G = (V, E), node v_s , max length *l* **Ensure:** score S_{sd} for all $n \leq l$ -degree neighbors v_d of v_s

$\begin{array}{l} 1: \text{ insert } v_s \text{ into } \textit{Found} \\ 2: \text{ push } v_s \text{ onto } \textit{NewSearch} \end{array}$
3: insert $(v_s, 1)$ into S
4: for CurrentDegree $\leftarrow 0$ to / do
5: $OldSearch \leftarrow NewSearch$
6: empty NewSearch
5: $OldSearch \leftarrow NewSearch$ 6: empty NewSearch 7: while OldSearch is not empty do 8: pop v_i from OldSearch
8: pop v _i from OldSearch
9: find NodeInput using v _i in S
10: $SumOutput \leftarrow 0$
11: for each v_j in neighbors of v_i do
12: add weight of eij to SumOutput
13: end for
14: $Flow \leftarrow 0$ 15: for each v: in neighbors of v: do
16: $w_{ij} \leftarrow \text{weight of } e_{ij}$
17: Flow \leftarrow Nodelnput $\times \frac{w_{ij}}{SumOutput}$
18: insert or sum $(v_i, Flow)$ into S
19: if v_i is not in Found then
20: insert v_i into Found
21: push vi onto NewSearch
22: end if 23: end for 24: end ŵhile
24: end while < □ > < = > < = > = < < < < < < < < < < < <
25: end for 21/23

Wang, Satuluri, Parthasarathy Evaluation

"The testing dataset is formed in a similar fashion: the links that are formed in the 10th year (T10 in Figure 5) are treated as testing instances that need to be predicted as positive, and we include a sample of the links that are not formed in the whole of the dataset as testing instances whose ground truth labeling is negative. The features that are used by the classifier trained previously are formed from the first 9 years of data."

Hasan and Zaki Evaluation

- "Pairs of authors that represent positive class or negative class were chosen randomly from the list of pairs that qualify. Then we constructed the feature vector for each pair of authors."
- "So, a baseline classifier would have an accuracy around 50% by classifying all the testing data points to be equal to 1 or 0, whereas all the models that we tried reached an accuracy above 80%."
- "In our experiments, we used standard cross validation approach to report the performance, so training and testing datasets are drawn from the same distribution."