
New Perspectives and Methods in Link Prediction

Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla

KDD 2010, Washington, D.C.

25 July 2010

1 / 23



Introduction

Metrics

Time

Labels Predictions

2 / 23



Data

phone (weighted, directed)- a
stream of event records from a
major non-American cellular
phone service provider

◮ Weeks 1-5
◮ 5.5M nodes
◮ 19.7M links

◮ Week 6
◮ 4.4M nodes
◮ 8.5M links

condmat (weighted,
undirected) - a physics
collaboration data set from
Mark Newman

◮ Years 1995-1999
◮ 13.9K nodes
◮ 80.6K links

◮ Year 2000
◮ 8.5K nodes
◮ 41.0K links

phone condmat

Assortativity Coef. 0.293 0.177
Average Clustering Coef. 0.187 0.642
Mean Degree 3.88 6.42
Median Degree 3 4
Number of SCCs 1,023,044 652
Largest SCC 4,293,751 15,081
Largest SCC Diameter 25 19
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Single-Metric Methods

◮ Node-based
◮ Degree
◮ Weight
◮ Centrality

◮ Neighbor-based
◮ Common Neighbors
◮ Jaccard’s Coefficient
◮ Adamic/Adar

◮ Path-based
◮ Katz
◮ Rooted PageRank
◮ Hitting Time
◮ Commute Time
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PropFlow
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Local and Global Influences
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Feature Listing

Name Parameters
In-Degree(i) -
In-Volume(i) -
In-Degree(j) -
In-Volume(j) -
Out-Degree(i) -
Out-Volume(i) -
Out-Degree(j) -
Out-Volume(j) -
Common Nbrs(i ,j) -
Max. Flow(i ,j) ℓ = 5
Shortest Paths(i ,j) ℓ = 5
PropFlow(i ,j) ℓ = 5
Adamic/Adar(i ,j) -
Jaccard’s Coef(i ,j) -
Katz(i ,j) ℓ = 5, β = 0.005
Pref Attach(i ,j) -
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The Case for Supervised Learning
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The Case for Supervised Learning

◮ Many networks are built from data streams. We are inundated
with new data, which eventually becomes truth data.
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The Case for Supervised Learning

◮ Many networks are built from data streams. We are inundated
with new data, which eventually becomes truth data.

◮ The classification step takes less time than gathering
topological measures.

◮ Networks have different underlying mechanisms driving the
formation of links.

◮ We can capture and describe interrelated mechanisms of link
formation.

◮ We gain the opportunity to focus on differentiating the class
boundaries.
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Imbalance and Geodesic Distance

The class imbalance ratio for link prediction in a sparse network is
lower-bounded by the number of vertices in the network.
Solution: Geodesic decomposition and undersampling!
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ROC Results
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Conclusions

◮ Links form according to a competition between local and
global influences, and the dominant factor depends upon the
network.

◮ We recommend PropFlow on communication networks such as
phone when supervised predictors are somehow infeasible.

◮ HPLP outperforms single methods by 30% AUROC using a
combination of undersampling and ensembles, and it requires
less time than feature construction.

◮ Resulting data sets present a whole new world of imbalanced
data challenges. Typical techniques work poorly or not at all.
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AUROC Results
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Evaluation

◮ Link prediction papers often report results in terms of
precision and recall.

◮ This requires selecting arbitrary thresholds (e.g. 50%
probability).

◮ We use threshold-agnostic measures because any threshold is
domain-specific or entirely unknown.
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Data and Evaluation: Network Saturation
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Feature Listing

Name Parameters HPLP HPLP+
In-Degree(i) - X X

In-Volume(i) - X X

In-Degree(j) - X X

In-Volume(j) - X X

Out-Degree(i) - X X

Out-Volume(i) - X X

Out-Degree(j) - X X

Out-Volume(j) - X X

Common Nbrs(i ,j) - X X

Max. Flow(i ,j) l = 5 X X

Shortest Paths(i ,j) l = 5 X X

PropFlow(i ,j) l = 5 X X

Adamic/Adar(i ,j) - X

Jaccard’s Coef(i ,j) - X

Katz(i ,j) l = 5, β = 0.005 X

Pref Attach(i ,j) - X
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Imbalance

Definition
Let a network G = (V ,E ) be described as sparse if it maintains
the property |E | = k |V | for some constant k ≪ |V |.

Theorem
The class imbalance ratio for link prediction in a sparse network G

is Ω
(

|V |
1

)

when at most |V | nodes may join the network.

Proof.
The number of possible links in G is |V |2. Then the number of
missing links, |EC |, is |V |2 − k |V | ∈ Θ(|V |2). Let |V ′| nodes and
|E ′| links join the network. Since |V |+ |V ′| ≤ 2|V | ∈ Θ(|V |),
|E |+ |E ′| ∈ Θ(|V |), which requires that |E ′| ∈ O(|V |). The

number of positives is |E ′|, and there are
∣

∣

∣
(E ∪ E ′)C

∣

∣

∣
∈ Θ(|V |2)

negatives. This gives us
Θ(|V |2)
O(|V |) , equivalent to Ω

(

|V |
1

)

, as the

class ratio.
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Graph Distance and Imbalance
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Variance Reduction and Ensembles
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PropFlow - Erratum

Require: network G = (V , E), node vs , max length l

Ensure: score Ssd for all n ≤ l-degree neighbors vd
of vs

1: insert vs into Found

2: push vs onto NewSearch

3: insert (vs , 1) into S

4: for CurrentDegree ← 0 to l do

5: OldSearch ← NewSearch

6: empty NewSearch

7: while OldSearch is not empty do

8: pop vi from OldSearch

9: find NodeInput using vi in S

10: SumOutput ← 0

11: for each vj in neighbors of vi do

12: add weight of eij to SumOutput

13: end for

14: Flow ← 0
15: for each vj in neighbors of vi do

16: wij ← weight of eij

17: Flow ← NodeInput ×
wij

SumOutput

18: insert or sum (vi , Flow) into S

19: end for

20: if vi is not in Found then

21: insert vi into Found

22: push vi onto NewSearch

23: end if

24: end while

25: end for

Require: network G = (V , E), node vs , max length l

Ensure: score Ssd for all n ≤ l-degree neighbors vd
of vs

1: insert vs into Found

2: push vs onto NewSearch

3: insert (vs , 1) into S

4: for CurrentDegree ← 0 to l do

5: OldSearch ← NewSearch

6: empty NewSearch

7: while OldSearch is not empty do

8: pop vi from OldSearch

9: find NodeInput using vi in S

10: SumOutput ← 0

11: for each vj in neighbors of vi do

12: add weight of eij to SumOutput

13: end for

14: Flow ← 0
15: for each vj in neighbors of vi do

16: wij ← weight of eij

17: Flow ← NodeInput ×
wij

SumOutput

18: insert or sum (vj , Flow) into S

19: if vj is not in Found then

20: insert vj into Found

21: push vj onto NewSearch

22: end if

23: end for

24: end while

25: end for 21 / 23



Wang, Satuluri, Parthasarathy Evaluation

◮ “The testing dataset is formed in a similar fashion: the links
that are formed in the 10th year (T10 in Figure 5) are treated
as testing instances that need to be predicted as positive, and
we include a sample of the links that are not formed in the
whole of the dataset as testing instances whose ground truth
labeling is negative. The features that are used by the
classifier trained previously are formed from the first 9 years of
data.”
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Hasan and Zaki Evaluation

◮ “Pairs of authors that represent positive class or negative class
were chosen randomly from the list of pairs that qualify. Then
we constructed the feature vector for each pair of authors.”

◮ “So, a baseline classifier would have an accuracy around 50%
by classifying all the testing data points to be equal to 1 or 0,
whereas all the models that we tried reached an accuracy
above 80%.”

◮ “In our experiments, we used standard cross validation
approach to report the performance, so training and testing
datasets are drawn from the same distribution.”
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