Probably the best itemsets Bayesian approach for ranking itemsets

Nikolaj Tatti

nikolaj.tatti@gmail.com

ADReM, Universiteit Antwerpen, Antwerpen, Belgium

Problem of Pattern Explosion

- Pattern explosion is the biggest setback in pattern mining.
- Rank/prune the itemsets by comparing the observed support against the expected value.
 - Large difference in supports = interesting pattern.
- An independence model is a popular choice.

Why this is bad?

- We discover the same information multiple times.
- Consider a data set with K items such that

• $a_1 = a_2$

- the rest of items are independent.
- Any itemset containing both a₁ and a₂ does not follow independence assumption.
- There will be 2^{K-2} interesting itemsets.
- However, to explain the data we need to know only the frequencies of singletons and a_1a_2 .

Pattern set mining

- Recent trend in pattern mining.
- Score a pattern set as a whole instead of single pattern.
- By doing so can remove redundancy more efficiently.
- Statistical approach:
 - Build a statistical model from the current patterns.
 - Fit the model into data,

model explains data well = current pattern set is good.

- Pattern set selection = model selection.
- Use heuristics to find a good collection.

Can we use pattern set measures for scoring individual itemsets?

Recipe for Scoring Itemsets

- You need
 - a set of statistical models, say M_1, \ldots, M_K ,
 - a function fam mapping a model M_i to some downward closed itemset collection, $F_i = fam(M_i)$.
- $p(M_i \mid D)$ is the posterior probability of the *i*th model.
- Score of an itemset X

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

Example

Assume 3 models,

Model	Itemsets	$p(M \mid D)$
\mathcal{M}_1	a, b, c, d, ab, bc, cd	0.5
M_2	a, b, c, d, ab, ad	0.3
M_3	a, b, c, d, bc, cd	0.2

Example

Assume 3 models,

Model	Itemsets	$p(M \mid D)$
\mathcal{M}_1	a, b, c, d, ab, bc, cd	0.5
M_2	a, b, c, d, ab, ad	0.3
M_3	a, b, c, d, bc, cd	0.2

The scores for singletons are

$$sc(a) = sc(b) = sc(c) = sc(d) = 1,$$

The scores for non-singletons are

$$sc(ab) = 0.8, sc(bc) = 0.7, sc(ad) = 0.3, sc(cd) = 0.7.$$

The score decreases monotonically but...

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

• ...we have 4 problems.

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

• ...we have 4 problems.

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

• How to define \dot{M}_i ?

• ...we have 4 problems.

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

• How to define M_i ?
• How to define $F_i = fam(M_i)$?

...we have 4 problems.

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

- How to define M_i ?
- How to define $F_i = fam(M_i)$?
- How to compute the probability $p(M_i \mid D)$?

...we have 4 problems.

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D).$$

- How to define M_i?
 How to define F_i = fam(M_i)?
- How to compute the probability $p(M_i \mid D)$?
- How to compute the sum?

Defining Model

- Use exponential models (a.k.a log-linear or maximum entropy models):
 - The mapping *fam* will be natural.
 - Connections with maximum entropy principle.
 - Connections with MDL theory.
 - Empirical demonstrations for being a good estimate.
- Posterior $p(M \mid D)$ can be estimated for a large subset of exponential models.

Why exponential model is so great

If M is the simplest model (smallest |fam(M)|) that explains the data, then

•
$$sc(X) \rightarrow 1$$
 if $X \in fam(M)$.

•
$$sc(X) \rightarrow 0$$
 if $X \notin fam(M)$.

Computing the sum

Instead of computing

$$sc(X) = \sum_{X \in F_i} p(M_i \mid D)$$

sample N models from $p(M \mid D)$ and estimate

$$sc(X) \approx \frac{\text{number of models for which } X \in fam(M)}{N}$$

Use MCMC.

Some examples

- Course enrollment data for CS courses in Helsinki.
- 4 most interesting (non-singletons) itemsets
 - Computer Architectures, Performance Analysis (0.95)
 - Design and Analysis of Algorithms, Principles of Functional Programming (0.94)
 - Database Systems II, Information Storage (0.94)
 - Three concepts: probability, Machine Learning (0.92)

That's it!