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Ubiquitous Social Networks
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A Hypothetical Example of Viral Marketing
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Effectiveness of Viral Marketing
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level of trust on different types of ads *

*source from Forrester Research  and Intelliseek

very effective



Social influence graph
vertices are individuals
links are social relationships
number p(u,v) on a directed link 
from u to v  is the probability that 
v is activated by u after u is 
activated

Independent cascade model
initially some seed nodes are 
activated
At each step, each newly 
activated node u activates its 
neighbor v with probability p(u,v)
influence spread: expected 
number of nodes activated

Influence maximization:
find k seeds that generate the 
largest influence spread

The Problem of Influence Maximization
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Influence maximization as a discrete optimization problem 
proposed by Kempe, Kleinberg, and Tardos, in KDD’2003

Finding optimal solution is provably hard (NP-hard)

Greedy approximation algorithm, 63% approximation of the 
optimal solution

Repeat k rounds: in the i-th round, select a node v that provides the 
largest marginal increase in influence spread

require the evaluation of influence spread given a seed set --- hard and 
slow

Several subsequent studies improved the running time

Serious drawback:

very slow, not scalable: > 3 hrs on a 30k node graph for 
50 seeds

Research Background
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Design new heuristics

MIA (maximum influence arborescence) heuristic

for general independent cascade model

103 speedup --- from hours to seconds (or days to minutes)

influence spread close to that of the greedy algorithm of [KKT’03]

We also show that computing exact influence spread given a 
seed set is #P-hard (counting hardness)

resolve an open problem in [KKT’03]

indicate the intrinsic difficulty of computing influence spread

Our Work
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For any pair of nodes u and 
v, find the maximum 
influence path (MIP) from u 
to v

ignore MIPs with too small 
probabilities ( < parameter )

Maximum Influence Arborescence (MIA) 
Heuristic I: Maximum Influence Paths (MIPs)
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MIA Heuristic II: Maximum Influence in-
(out-) Arborescences
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Local influence regions

for every node v, all MIPs 
to v form its maximum
influence in-arborescence 
(MIIA )



Local influence regions

for every node v, all MIPs 
to v form its maximum
influence in-arborescence 
(MIIA )

for every node u, all MIPs  
from u form its maximum
influence out-
arborescence (MIOA )

These MIIAs and MIOAs 
can be computed 
efficiently using the 
Dijkstra shortest path 
algorithm

MIA Heuristic II: Maximum Influence in-
(out-) Arborescences
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Recursive computation of activation probability ap(u) of a 
node u in its in-arborescence, given a seed set S

Can be used in the greedy algorithm for selecting k seeds,
but not efficient enough

MIA Heuristic III: Computing Influence 
through the MIA structure
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If v is the root of a MIIA, and u is a node in the MIIA, then 
their activation probabilities have a linear relationship:

All            ‘s in a MIIA can be recursively computed
time reduced from quadratic to linear time

If u is selected as a seed, its marginal influence increase to v 
is 

Summing up the above marginal influence over all nodes v, 
we obtain the marginal influence of u

Select the u with the largest marginal influence

Update              for all w’s that are in the same MIIAs as u

MIA Heuristic IV: Efficient Updates on 
Activation Probabilities
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Iterating the following two steps until finding k seeds

Selecting the node u giving the largest marginal influence

Update MIAs (linear coefficients) after selecting u as the seed

Key features:

updates are local, and linear to the arborescence size

tunable with parameter : tradeoff between running time and 
influence spread

MIA Heuristic IV: Summary
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Experiment Results on MIA Heuristic
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weighted cascade model:

• influence probability to a node v = 1 / (# of in-neighbors of v)

Influence spread vs. seed set size

NetHEPT dataset: 

• collaboration network from physics  archive

• 15K nodes, 31K edges

Epinions dataset: 

• who-trust-whom network of Epinions.com

• 76K nodes, 509K edges



Experiment Results on MIA Heuristic
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running time

104 times

speed up
>103 times

speed up

Running time is for selecting 50 seeds



Scalability of MIA Heuristic
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• synthesized graphs of different sizes generated from power-law graph model

• weighted cascade model

• running time is for selecting 50 seeds



Greedy approximation algorithms
Original greedy algorithm [Kempe, Kleinberg, and Tardos, 2003]

Lazy-forward optimization [Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, and 
Glance, 2007]

Edge sampling and reachable sets [Kimura, Saito and Nakano, 2007; C., Wang, and 
Yang, 2009]

reduced seed selection from days to hours (with 30K nodes), but still not scalable

Heuristic algorithms

SPM/SP1M based on shortest paths [Kimura and Saito, 2006], not scalable

SPIN based on Shapley values [Narayanam and Narahari, 2008], not scalable

Degree discounts [C., Wang, and Yang, 2009], designed for the uniform IC model

CGA based on community partitions [Wang, Cong, Song, and Xie 2010]
complementary

our local MIAs naturally adapt to the community structure, including overlapping communities

Related Work
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Theoretical problem: efficient approximation algorithms:

How to efficiently approximate influence spread given a seed set?

Practical problem: Influence analysis from online social media

How to mine the influence graph?

Future Directions
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Thanks!
and 
questions?
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Experiment Results on MIA Heuristic
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weighted cascade model:

• influence probability to a node v = 1 / (# of in-neighbors of v)

Influence spread vs. seed set size running time

NetHEPT dataset: 

• collaboration network from 
physics  archive

• 15K nodes, 31K edges

Epinions dataset: 

• who-trust-whom network 
of Epinions.com

• 76K nodes, 509K edges

104 times

speed up>103 times

speed up

Running time is for selecting 50 seeds


