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Motivation

• Many content providing websites have 
implemented rating and social network 
features.

• E.g. Youtube,  Amazon,  Epinions
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Trust Antecedent Model

R. C. Mayer, J. H. Davis, and D. F. Schoorman. An integrative model of 
organizational trust. The Academy of Management Review, 20(3), 1995.
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Factors For Online Scenarios

• Expressiveness 
• Stringency
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Variables

• Attributes (Continuous)
–propensity, expressibility, stringency, ability

• Known Events (Discrete)
–expressing trust with positive/negative label
–rating an object from 0 to 4

• Missing Events (Discrete with uncertainty)
–label of trust when it is not express
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Trust Inference
The three components are as follows,
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where n(rr
i |t) are the ratings i has rated with value r given

trust t, n(rr
i,j |t) are the ratings i has rated on j objects with

values r given that the trust is t.

4.2 Parameter Learning

After inference on unobserved variables ti,j ’s, we update

the parameters y, a, e, b. The derivation of parameter learn-

ing equations for y, a and e follows that of Section 3.1 and

we leave them out due to space constraint. Instead, we state

the equations for y, a, e and show the derivation for b. The

updated posterior distributions of y, a and e parameters are:
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4.3 Trust Prediction

After learning the parameters, we predict the trust be-

tween i and j, ti,j using its Markov Blanket [22]. The

Markov Blanket is the minimum set of variables required

to infer the value of a variable. This minimum set is given

by the variable’s children, parents and children’s parents.

Hence, probability of ti,j given its Markov Blanket is:

P (ti,j = t|oi,j = o, ri,j , yi, ei, bi, aj)

∝ P (oi,j = o|ti,j = t, ei)P (ti,j = t|yi, aj)P (ri,j |ti,j = t, bi)

If we are not able to observe the ratings between i and j, we

can use the law of total probability as follows,

P (ti,j |oi,j , yi, ei, bi, aj)
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P (ti,j = t, ri,j,k = r|oi,j , yi, ei, bi, aj)

∝ P (oi,j |ti,j , ei)P (ti,j |yi, aj)

Algorithm 1 illustrates the relation of these three sections.

Algorithm 1 Inference and Learning

Randomly assign {0, 1} to ti,j ∀ i, j
Count n(ti), n(tj), n(oi|t), n(rr

i |t) ∀ i, j
while not converge do

for i ← 1 to I do
for j ← 1 to J do

Subtract from n(ti), n(tj), n(oi|t), n(rr
i |t) to ex-

clude the results of ti,j from previous iterations.

ti,j ← Perform Inference. (Section 4.1)

Add to n(ti), n(tj), n(oi|t), n(rr
i |t) to include the

results of current iteration.

end for
end for

end while
Update the Parameters (Section 4.2).

Perform the Prediction (Section 4.3).

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the the performance of our

model using a real data set from Epinions [18]. We run two

sets of experiments. The first set simulates the existence of

ground truth by artificially hiding the true value of links. In

the second set of experiments, we apply our model on the

entire data-set with all available ratings and trust link labels.

We examine the distribution of network properties before

and after learning. We then show that the distribution after

learning is a better reflection of the network.

5.1 Data Set

We used the Epinions data set from trustlet.org. Epinions

is an online website that provides reviews of products. The

reviews are meant to help other users acquire knowledge and

opinions about product. These reviews are written by users

and can be rated by other users. Users can choose to read

and/or rate subsets of reviews by filtering. The Epinions

system filters the reviews based on the users’ Web of Trust.

To apply our proposed models to the data set, we consider

the users who write reviews as contributors and users who

rate objects as raters.

To keep the computation manageable, we extract a subset

of the Epinions network data set as follows. We first initial-

ize a rater set and a contributor set to be empty. The rater

with the largest number of rated contributors is first added

The three components are as follows,
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is an online website that provides reviews of products. The

reviews are meant to help other users acquire knowledge and

opinions about product. These reviews are written by users

and can be rated by other users. Users can choose to read

and/or rate subsets of reviews by filtering. The Epinions

system filters the reviews based on the users’ Web of Trust.

To apply our proposed models to the data set, we consider

the users who write reviews as contributors and users who

rate objects as raters.

To keep the computation manageable, we extract a subset

of the Epinions network data set as follows. We first initial-

ize a rater set and a contributor set to be empty. The rater

with the largest number of rated contributors is first added

1. For each rater i ∈ I, sample distribution parameters:
propensity yi, using Beta distribution with symmetric
hyper-parameters

yi ∼ Beta(τ)
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P (ti,j = t|yi, aj) = yt
i at

j(1− yi)
1−t(1− aj)

1−t

(b) Rater sample distribution parameters: expressive-
ness ei|t and stringency bi|t, using Beta distribu-
tion with symmetric hyper-parameters

bi|t ∼ Beta(β)

ei|t ∼ Beta(�)

(c) Rater generates the observability of link oi,j based
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ti,j .
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i|t(1− ei|t)
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(d) For each object k ∈ Kj , Rater generates rating
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ii. trust ti,j towards the contributor j of the ob-
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Figure 4: Plate Notation for TAF Model

The above generative process can be represented in graph-
ical plate notations as shown in Figure 4. The directed ar-
rows in Figure 4 denote dependency assumptions. Variables

in shaded circles (i.e., oi,j ’s and ri,j,k’s) denote completely
observed variables while those in grey circles (i.e., ti,j) repre-
sent partially observable variables. The remaining variables
are non-observable.

Note that the generative process requires a few hyper-
parameters τ , �, α, and β for the parametric probability
distributions. Our modeling goal is to learn these hyper-
parameters based on the observed data. After learning the
parameters from observed data, we will be able to infer the
values of future unobserved data. These hyper-parameters
may be set as constants at the beginning of the learning
process.

The trust link and observability are modeled as Bernoulli
events since they have binary values. The rating has m
states and we can choose to model the rating as a set of
m multinomial variables. Multinomial distribution however
assumes that each state is independent and identically dis-
tributed. This assumption unfortunately does not hold in
practice. Instead, we divide an object into m parts, a rater
will give a rating of m if the rater likes all m parts, a rater
gives a rating of m − 1 if the rater likes all but one part,
conversely, a rater gives a rating of zero if the rater does not
like any parts. Hence, if we model each part as a Bernoulli
event, then the rating distribution can be generalized to a
Binomial distribution.

To further justify the use of binomial distribution for rat-
ings, we will like to explain the relationship between bi-
nomial, poisson and gaussian distributions. The binomial
distribution requires factorial calculations which may be in-
feasible when the number of states approaches infinity, i.e.
m→∞. Poisson distribution is a discrete approximation for
the binomial distribution when m→∞ and the probability
of each state approaches zero. The gaussian distribution is
a continuous approximation of binomial distribution when
m → ∞ but the probability of each state occurring is near
to 0.5. Since object ratings are usually in the discrete range
of [0, 4], it is more appropriate to use binomial distributions.

Due to the presence of partially observed variable ti,j , the
joint probability cannot be factorized into separable compo-
nents and the parameters cannot be solved analytically. To
learn the parameters, we will use Collapsed Gibbs Sampling
which has been used for parameter learning in topic models
[9, 2].

4.1 Inference using Collapsed Gibbs Sampling
The key idea of Gibbs Sampling is to break up the Bayesian

network into manageable chunks and sample each unob-
served variable separately from the rest [3]. Each time we
sample the unobserved variable, we make assumptions that
the rest of the network is correctly sampled. Repeating the
sampling process for multiple iterations will improve the ac-
curacy of the initial assumptions made. Collapsed Gibbs
Sampling improves the efficiency over Gibbs Sampling by
marginalizing the parameters out of the joint distribution.
We sample whenever we encounter an unobserved link ti,j .
The Gibbs sampling inference procedure can be written in
this form P (ti,j |ti,−j , o, r, β, �, τ, α) where ti,−j refers to the
set of all t variables except for ti,j ,

P (ti,j = t|ti,−j , o, r, β, �, τ, α)

∝ P (oi,j |ti,j = t, oi,−j , �)P (ti,j = t|ti,−j , τ, α)

P (ri,j |ti,j = t, ri,−j , β)
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The three components are as follows,
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where n(rr
i |t) are the ratings i has rated with value r given

trust t, n(rr
i,j |t) are the ratings i has rated on j objects with

values r given that the trust is t.

4.2 Parameter Learning

After inference on unobserved variables ti,j ’s, we update

the parameters y, a, e, b. The derivation of parameter learn-

ing equations for y, a and e follows that of Section 3.1 and

we leave them out due to space constraint. Instead, we state

the equations for y, a, e and show the derivation for b. The

updated posterior distributions of y, a and e parameters are:

P (yi|ti, τ, α) ∼ Beta
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τ + n(t1i ), τ + n(t0i )
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The updated posterior distribution of bi’s is derived as fol-

lows.
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4.3 Trust Prediction

After learning the parameters, we predict the trust be-

tween i and j, ti,j using its Markov Blanket [22]. The

Markov Blanket is the minimum set of variables required

to infer the value of a variable. This minimum set is given

by the variable’s children, parents and children’s parents.

Hence, probability of ti,j given its Markov Blanket is:

P (ti,j = t|oi,j = o, ri,j , yi, ei, bi, aj)

∝ P (oi,j = o|ti,j = t, ei)P (ti,j = t|yi, aj)P (ri,j |ti,j = t, bi)

If we are not able to observe the ratings between i and j, we

can use the law of total probability as follows,
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P (ti,j = t, ri,j,k = r|oi,j , yi, ei, bi, aj)

∝ P (oi,j |ti,j , ei)P (ti,j |yi, aj)

Algorithm 1 illustrates the relation of these three sections.

Algorithm 1 Inference and Learning

Randomly assign {0, 1} to ti,j ∀ i, j
Count n(ti), n(tj), n(oi|t), n(rr

i |t) ∀ i, j
while not converge do

for i ← 1 to I do
for j ← 1 to J do

Subtract from n(ti), n(tj), n(oi|t), n(rr
i |t) to ex-

clude the results of ti,j from previous iterations.

ti,j ← Perform Inference. (Section 4.1)

Add to n(ti), n(tj), n(oi|t), n(rr
i |t) to include the

results of current iteration.

end for
end for

end while
Update the Parameters (Section 4.2).

Perform the Prediction (Section 4.3).

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the the performance of our

model using a real data set from Epinions [18]. We run two

sets of experiments. The first set simulates the existence of

ground truth by artificially hiding the true value of links. In

the second set of experiments, we apply our model on the

entire data-set with all available ratings and trust link labels.

We examine the distribution of network properties before

and after learning. We then show that the distribution after

learning is a better reflection of the network.

5.1 Data Set

We used the Epinions data set from trustlet.org. Epinions

is an online website that provides reviews of products. The

reviews are meant to help other users acquire knowledge and

opinions about product. These reviews are written by users

and can be rated by other users. Users can choose to read

and/or rate subsets of reviews by filtering. The Epinions

system filters the reviews based on the users’ Web of Trust.

To apply our proposed models to the data set, we consider

the users who write reviews as contributors and users who

rate objects as raters.

To keep the computation manageable, we extract a subset

of the Epinions network data set as follows. We first initial-

ize a rater set and a contributor set to be empty. The rater

with the largest number of rated contributors is first added
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i,j |t) are the ratings i has rated on j objects with

values r given that the trust is t.
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After inference on unobserved variables ti,j ’s, we update

the parameters y, a, e, b. The derivation of parameter learn-

ing equations for y, a and e follows that of Section 3.1 and

we leave them out due to space constraint. Instead, we state

the equations for y, a, e and show the derivation for b. The
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After learning the parameters, we predict the trust be-

tween i and j, ti,j using its Markov Blanket [22]. The

Markov Blanket is the minimum set of variables required

to infer the value of a variable. This minimum set is given

by the variable’s children, parents and children’s parents.

Hence, probability of ti,j given its Markov Blanket is:
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Algorithm 1 illustrates the relation of these three sections.
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clude the results of ti,j from previous iterations.

ti,j ← Perform Inference. (Section 4.1)
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i |t) to include the

results of current iteration.

end for
end for

end while
Update the Parameters (Section 4.2).

Perform the Prediction (Section 4.3).

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the the performance of our

model using a real data set from Epinions [18]. We run two

sets of experiments. The first set simulates the existence of

ground truth by artificially hiding the true value of links. In

the second set of experiments, we apply our model on the

entire data-set with all available ratings and trust link labels.

We examine the distribution of network properties before

and after learning. We then show that the distribution after

learning is a better reflection of the network.

5.1 Data Set

We used the Epinions data set from trustlet.org. Epinions

is an online website that provides reviews of products. The

reviews are meant to help other users acquire knowledge and

opinions about product. These reviews are written by users

and can be rated by other users. Users can choose to read

and/or rate subsets of reviews by filtering. The Epinions

system filters the reviews based on the users’ Web of Trust.

To apply our proposed models to the data set, we consider

the users who write reviews as contributors and users who

rate objects as raters.

To keep the computation manageable, we extract a subset

of the Epinions network data set as follows. We first initial-

ize a rater set and a contributor set to be empty. The rater

with the largest number of rated contributors is first added



Data Set
We used the Epinions data set from trustlet.org.

Product reviews ⇒ Objects
Review contributors ⇒ Trustees
Review raters ⇒ Trustors

We only consider trust links where rater have rated at 
least one object of the contributor

Raters Contributors # Known 
Trust Links

# Missing Trust 
Links

Total

85,132 75,294 467,047 3,575,298 4,042,345



Baseline

Ignores the trusteeʻs ability and the 
trustorʻs expressibility.

I
J

K
b r

y

t

Raters

Contributors

Objects

y propensity
b stringency

t trust label
r rating



Experiments

• Five fold cross validation.
• By dividing the links in round robin
• Perform training on four sets and testing on one set
• Repeat 5 times
• Average the 5 set of Precision and Recall curves.
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Figure 6: Prediction for Distrust Links

clearly show that TAF is better than the Naive model as
measured by AUC of PR curves and F1.

Under the condition that observability of trust links is
unknown, TAF is still better than Naive model by AUC of
PR curves. Nevertheless, the AUC result of TAF is poorer
than that under the previous observability condition. This
is expected because the true observability is unknown. The
naive model surprisingly performs well under F1. We believe
the use of 0.5 trust probability as the threshold classify trust
and distrust is not ideal, and should be tuned further. We
shall investigate this further in the future work.

Table 1: Area under PR Curve
TAF Baseline

AUC (observable) 0.804 0.708
AUC (unobservable) 0.742 0.708
F1 (observable) 0.780 0.739
F1 (unobservable) 0.711 0.739

5.3 Results of Data Modeling Experiments
In the second set of experiments, we perform trust infer-

ence on the entire data set as a single instance. We examine
the distribution of trust and distrust links for each rater and
contributor. Figure 7(a) shows the trust ratio distribution
of contributors before inference. The trust ratio of a con-
tributor j is computed as follows:

number of observable trust links to j
number of observable links to j

(1)

Based on this definition, the distribution excludes trust links
that are unobserved. We also deliberately exclude contribu-
tors with fewer than five observable links as they are insignif-
icant cases. After inference, we are able to give a measure of
our uncertainty about the unobservable trust for each link.
Hence, the trust distribution of each contributor j after in-
ference is given by,

1
n

n�

i

E(ti,j) n is the number of links to j (2)

where E(ti,j) represents the expected trust rater i has for
contributor j. Since our trust ti,j follows a bernoulli distri-
bution, the expected value is also the probability P (ti,j = 1).

We present the trust distribution in Figure 7(b). The dis-
tribution as shown is much smoother than the distribution
in Figure 7(a). This indicates that we recover much of the
missing information in the unobservable links.
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Figure 7: Distribution of Contributors’ Trust Ratio

Figure 8 shows the distribution of raters who express their
trust links. The expressiveness of a rater i is calculated as
follows,

expressiveness =
number of observable links from i

total number of links from i

The distribution result suggests that most raters do not ex-
press their trust links. The number of raters who actively
update their trust network is a minority. Therefore, our
TAF model increases the number of trust links to generate
a more complete network for most users. In other words, we
generate estimated missing values for sparse data.

We will now examine the distribution of trust links for
raters. Figure 9(a) shows the distribution of trust ratio for
each rater before learning. The definition of rater’s trust
ratio is similar to Equation 1 except that the link count is
rater specific. After learning, the trust ratio of a rater is
computed as:

1
n

n�

j

E(ti,j) n is the number of links from i (3)



Trust Ratio
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# of links to j

Trust Ratio

=

�n
i E(ti,j)

# of links to j

Prediction of Missing Trust Labels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Negative Observable Link Prediction

Recall

P
re

ci
si

o
n

 

 

TAF

Baseline

(a) Observable

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Negative Unobservable Link Prediction

Recall

P
re

ci
si

o
n

 

 

TAF

Baseline

(b) Unobservable

Figure 6: Prediction for Distrust Links

clearly show that TAF is better than the Naive model as
measured by AUC of PR curves and F1.

Under the condition that observability of trust links is
unknown, TAF is still better than Naive model by AUC of
PR curves. Nevertheless, the AUC result of TAF is poorer
than that under the previous observability condition. This
is expected because the true observability is unknown. The
naive model surprisingly performs well under F1. We believe
the use of 0.5 trust probability as the threshold classify trust
and distrust is not ideal, and should be tuned further. We
shall investigate this further in the future work.

Table 1: Area under PR Curve
TAF Baseline

AUC (observable) 0.804 0.708
AUC (unobservable) 0.742 0.708
F1 (observable) 0.780 0.739
F1 (unobservable) 0.711 0.739

5.3 Results of Data Modeling Experiments
In the second set of experiments, we perform trust infer-

ence on the entire data set as a single instance. We examine
the distribution of trust and distrust links for each rater and
contributor. Figure 7(a) shows the trust ratio distribution
of contributors before inference. The trust ratio of a con-
tributor j is computed as follows:

number of observable trust links to j

number of observable links to j
(1)

Based on this definition, the distribution excludes trust links
that are unobserved. We also deliberately exclude contribu-
tors with fewer than five observable links as they are insignif-
icant cases. After inference, we are able to give a measure of
our uncertainty about the unobservable trust for each link.
Hence, the trust distribution of each contributor j after in-
ference is given by,
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E(ti,j) n is the number of links to j (2)

where E(ti,j) represents the expected trust rater i has for
contributor j. Since our trust ti,j follows a bernoulli distri-
bution, the expected value is also the probability P (ti,j = 1).

We present the trust distribution in Figure 7(b). The dis-
tribution as shown is much smoother than the distribution
in Figure 7(a). This indicates that we recover much of the
missing information in the unobservable links.
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Figure 7: Distribution of Contributors’ Trust Ratio

Figure 8 shows the distribution of raters who express their
trust links. The expressiveness of a rater i is calculated as
follows,

expressiveness =
number of observable links from i

total number of links from i

The distribution result suggests that most raters do not ex-
press their trust links. The number of raters who actively
update their trust network is a minority. Therefore, our
TAF model increases the number of trust links to generate
a more complete network for most users. In other words, we
generate estimated missing values for sparse data.

We will now examine the distribution of trust links for
raters. Figure 9(a) shows the distribution of trust ratio for
each rater before learning. The definition of rater’s trust
ratio is similar to Equation 1 except that the link count is
rater specific. After learning, the trust ratio of a rater is
computed as:

1
n

n
∑

j

E(ti,j) n is the number of links to j (3)
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Conclusion

• Proposed a model for modeling the user behavior 
attributes, rating and trust in online social networks

• Ideas in Management Science are useful in 
Computer Science

• Recover the latent trust network from explicit user 
interactions.



The End
Thank You

Freddy Chua
Singapore Management University


