An Energy-Efficient Mobile Recommender System

Yong Ge

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS

Rutgers, the State University of New Jersey

Introduction

- Mobile Sequential Recommendation
- Recommending Point Generation
- LCP and SkyRoute Algorithms
- **Experimental Results**

□Conclusions

Application Background **RUTGERS**

Research Motivation

Traditional recommender system Prediction performance (MSE/RMSE) Implicit/Explicit rating

Mobile recommender system

- □ Business success metrics
- Location-based recommendation

□Introduction

- Mobile Sequential Recommendation
- Recommending Point Generation
- LCP and SkyRoute Algorithms
- Experimental Results
- □Conclusions

Problem Formulation

6

The MSR Problem

Given: A set of potential pick-up points C with |C| = N, a probability set $\mathcal{P} = \{P(C_1), P(C_2), \dots, P(C_N)\}$, a directed sequence set $\overrightarrow{\mathcal{R}}$ with $|\overrightarrow{\mathcal{R}}| = M$ and the current position (*PoCab*) of a cab driver, who needs the service.

Objective: Recommending an optimal driving route $\overrightarrow{\mathbb{R}}$ $(\overrightarrow{\mathbb{R}} \in \overrightarrow{\mathcal{R}})$. The goal is to minimize the PTD:

$$\min_{\overrightarrow{R_i}\in\overline{\mathfrak{R}}} \mathcal{F}(PoCab, \overrightarrow{R_i}, \mathcal{P}_{\overrightarrow{R_i}})$$
(1)

 $\square \mathcal{P}_{\overrightarrow{R_i}}$: all probabilities of all pick-up points contained in $\overrightarrow{R_i}$

An Example

7

An Illustration Example.

PoCab -> C1 -> C4 or PoCab -> C4 -> C3 -> C2?

Two Challenges

Mining reliable pick-up point with probability information

Computation challenge to search the optimal route

LEMMA 1. Given a set of pick-up points C, where $|\mathcal{C}| = N, 1 \leq L_{\overrightarrow{R_i}} \leq N$ and $Cox(\mathcal{F}) = 1$, the complexity of searching an optimal directed sequence from $\overrightarrow{\mathcal{R}}$ is $\mathcal{O}(N!)$

MSR Problem with Constraints RUTGERS

9

The MSR Problem with a Length Constraint

Objective: Recommending an optimal sequence $\overrightarrow{\mathbb{R}^{\mathcal{L}}}(\overrightarrow{\mathbb{R}^{\mathcal{L}}} \in \overrightarrow{\mathcal{R}})$. The goal is to minimize the PTD:

$$\min_{\overrightarrow{R_i^{\mathcal{L}}} \in \mathfrak{R}} \mathcal{F}(PoCab, \overrightarrow{R_i^{\mathcal{L}}}, \mathcal{P}_{\overrightarrow{R_i^{\mathcal{L}}}})$$

 $R_i^{\hat{\mathcal{L}}}$ denote the recommended route with a length of \mathcal{L}

Computational complexity: $\mathcal{O}(N^{\mathcal{L}})$

Outline

□Introduction

- Mobile Sequential Recommendation
- Recommending Point Generation
- LCP and SkyRoute Algorithms
- Experimental Results
- Conclusions

Recommending Point Generation

High-performance Drivers

- Sufficient Driving Hours
- High Occupancy Rate

Clustering based on Driving Distance

- Clustering close pick-up points into one
 - pick-up cluster

Probability Calculation

Ratio of Pick-up Events Happening when cab travels across pick-up clusters

Outline

□Introduction

- Mobile Sequential Recommendation
- Recommending Point Generation
- LCP and SkyRoute Algorithms
- Experimental Results
- Conclusions

Potential Travel Distance Function: $\mathcal{F}(PoCab, \overrightarrow{R_i^{\mathcal{L}}}, \mathcal{P}_{\overrightarrow{R_i^{\mathcal{L}}}})$

Two Vectors:	$\mathcal{D}_{\overrightarrow{R^{\mathcal{L}}}} = \langle D_1, (D_1 + D_2), (D_1 + D_2 + D_3), (D_1 + D_2 + D_3 + D_4), D_\infty \rangle$
	$\mathcal{P}_{\overrightarrow{R^{\mathcal{L}}}} = \langle P_1, \overline{P(C_1)} \cdot P(C_2), \overline{P(C_1)} \cdot \overline{P(C_2)} \cdot P(C_3), \overline{P(C_1)} \cdot \overline{P(C_2)} \cdot \overline{P(C_3)} \cdot P(C_3) \cdot P(C_4), \overline{P(C_1)} \cdot \overline{P(C_1)} \cdot \overline{P(C_2)} \cdot \overline{P(C_3)} \cdot \overline{P(C_4)} \rangle$
PTD Function:	$\mathcal{F}(PoCab, \overrightarrow{R_i^{\mathcal{L}}}, \mathcal{P}_{\overrightarrow{R_i^{\mathcal{L}}}}) = \mathcal{D}_{\overrightarrow{R^{\mathcal{L}}}} \cdot \mathcal{P}_{\overrightarrow{R^{\mathcal{L}}}} \text{ where } \cdot \text{ is the dot product}$

Potential Travel Distance Function: $\mathcal{F}(PoCab, \overrightarrow{R_i^{\mathcal{L}}}, \mathcal{P}_{\overrightarrow{R_i^{\mathcal{L}}}})$

One Vectors:
$$\mathcal{DP} = \langle D_1, \overline{P(C_1)}, D_2, \overline{P(C_2)}, D_3, \overline{P(C_3)}, D_4, \overline{P(C_4)} \rangle$$

Generally, for $\overrightarrow{R_i^{\mathcal{L}}}$, $\mathcal{DP} = \langle DP_1, \cdots, DP_l, \cdots DP_{2\mathcal{L}} \rangle$
PTD Function: $\mathcal{F}(PoCab, \overrightarrow{R_i^{\mathcal{L}}}, \mathcal{P}_{\overrightarrow{R_i^{\mathcal{L}}}}) = \mathcal{F}(\mathcal{DP})$

Important Property of PTD Function

LEMMA 3. The Monotone Property of the PTD Function \mathcal{F} . The PTD Function $\mathcal{F}(\mathcal{DP})$ is strictly monotonically increasing with each attribute of vector \mathcal{DP} , which is a $2\mathcal{L}$ dimensional vector.

Route Dominance

16

DEFINITION 1. Route Dominance. A recommended driving route $\overrightarrow{R^{\mathcal{L}}}$, associated with the vector \mathcal{DP} , dominates another route $\overrightarrow{\widetilde{R^{\mathcal{L}}}}$, associated with the vector $\overrightarrow{\mathcal{DP}}$, iff $\exists 1 \leq l \leq 2\mathcal{L}$, $DP_l < \overrightarrow{DP_l}$ and $\forall 1 \leq l \leq 2\mathcal{L}$, $DP_l \leq \overrightarrow{DP_l}$. This can be denoted as $\overrightarrow{R^{\mathcal{L}}} \Vdash \overrightarrow{\widetilde{R^{\mathcal{L}}}}$.

By this definition, if a candidate route A is dominated by a candidate route B, A cannot be an optimal route

Constrained Sub-route Dominance

DEFINITION 2. Constrained Sub-route Dominance. Consider that two sub-routes \overrightarrow{R}_{sub} and $\overrightarrow{R'}_{sub}$ with an equal length (the number of pick-up points) and the same source and destination points. If the associated vector of \overrightarrow{R}_{sub} dominates the associated vector of $\overrightarrow{R'}_{sub}$, then \overrightarrow{R}_{sub} dominates $\overrightarrow{R'}_{sub}$, i.e. $\overrightarrow{R}_{sub} \Vdash \overrightarrow{R'}_{sub}$.

Illustration: the Sub-route Dominance

18

PROPOSITION 1. $\mathcal{L}CP$ **Pruning.** For two sub-routes A and B with a length \mathcal{L} , which includes only pick-up points, if sub-route A is dominated by sub-route B under Definition 2, the candidate routes with a length \mathcal{L} which contain sub-route A will be dominated and can be pruned in advance.

- Enumerate all sub-routes with length of L
- Prune dominated constrained sub-routes with length of L
- Once effort to prune search space offline

Skyline Route

19

DEFINITION 3. Skyline Route. A recommended driving route $\overrightarrow{R^{\mathcal{L}}}$ is a skyline route iff $\forall \overrightarrow{R_i^{\mathcal{L}}} \in \overrightarrow{\mathcal{R}}, \ \overrightarrow{R_i^{\mathcal{L}}}$ cannot dominate $\overrightarrow{R^{\mathcal{L}}}$ by Definition 1. This is denoted as $\overrightarrow{R_i^{\mathcal{L}}} \nvDash \overrightarrow{R^{\mathcal{L}}}$.

LEMMA 4. Joint Principle of Skyline Routes and the PTD Function \mathcal{F} . The optimal driving route determined by the PTD function \mathcal{F} should be a skyline route. This is denoted as $\overrightarrow{\mathbb{R}^{\mathcal{L}}} \in \overrightarrow{\mathcal{R}}_{Skyline}$

- First find the skyline routes
- Search the optimal driving route from the set of skyline routes

The SkyRoute Algorithm **RUTG**

20

- Traditional Skyline computing algorithms
 - time-consuming and large memory
- Pruning for SkyRoute
 - Prune some candidates including dominated subroutes, at a very early stage
 - The search space will be significant reduced, since lots of candidates containing dominated sub-routes are discarded
 - Gradual effort to continue prune the search space

One Pruning Illustration

If SubRoute R1 (PoCab→C1→C3) dominates
 SubRoute R2 (PoCab→C2→C3)
 by DEFINITION 2
 Then Any candidate like

(PoCab \rightarrow C1 \rightarrow C3 \rightarrow Ci \rightarrow ... \rightarrow CL) dominates

candidate as

 $(PoCab \rightarrow C_2 \rightarrow C_3 \rightarrow C_i \rightarrow \dots \rightarrow C_L),$

where $C_i \rightarrow ... \rightarrow C_L$ is one of all possible sub-

routes

Outline

□Introduction

- Mobile Sequential Recommendation
- Recommending Point Generation
- LCP and SkyRoute Algorithms
- Experimental Results
- Conclusions

Experimental Setup

Data set

- Real data set:
 - 500+ taxi drivers,30 days,San Francisco Bay Area
 - Time period: 2-3PM, 6-7PM
 - 10 pick-up clusters
- □ Synthetic data set: 10,15,20 Pick-up points

Platform

- □ Intel Core2 Quad Q8300 and 6.00GB RAM
- Windows 7 Professional
- 🗆 Matlab2008a

An Illustration of Optimal Driving Route

🔶 6-7PM

♦ L=3: $PoCab \rightarrow C1 \rightarrow C3 \rightarrow C2$ ♦ L=4: $PoCab \rightarrow C1 \rightarrow C3 \rightarrow C2 \rightarrow C7$ ♦ L=5

 $PoCab \rightarrow C4 \rightarrow C1 \rightarrow C3 \rightarrow C2 \rightarrow C7$

An Overall Comparison

25

A Comparison of Search Time - O - BFS - ECPS – O – BFS LCPS SR(D&C)S SR(D&C)S 7 60 6 50 Search Time (Sec) Search Time (Sec) 3 20 10 1 0 Length of Driving Route(L) Length of Driving Route(L) (b) Comparisons on Synthetic Data (10 Clusters) (a) Comparisons on Real Data (6-7PM) Some Acronyms. Brute-Force Search. BFS: $\mathcal{L}CPS$: Search with $\mathcal{L}CP$ SR(BNL)S: Search via Skyline Computing algorithm SkyRoute + BNL. SR(D&C)S:Searching via Skyline Computing Algorithm SkyRoute + D&C.

An Overall Comparison

The Pruning Effect

Pruning percentage: the number of pruned candidates divided by the number of all original candidates

A Comparison of Skyline Computing

Case: Multiple Evaluation Functions

28

A Comparison of Search Time for Multiple Optimal Driving Routes

Comparisons on Real Data (L=3, 6-7PM)

Comparisons on Synthetic Data (L=3, 10 Clusters)

Five different evaluation functions

Outline

□Introduction

- Mobile Sequential Recommendation
- Recommending Point Generation
- LCP and SkyRoute Algorithms
- Experimental Results
- Conclusions

Conclusion Remarks

An energy-efficient mobile recommender system

Potential Travel Distance (PTD) Function

 \Box Algorithms: $\mathcal{L}CP$ and SkyRoute

Thank You !

31

Poster Session II & Demo Session Date: Tuesday, July 27, 2010 Time: 5:45pm - 8:00pm Location: Independence Center B, floor 1

The Recommendation Process

Illustration of the *Circulating Mechanism*

The SkyRoute Algorithm

THE STATE UNIVERSITY OF NEW JERSEY

33

ALGORI Input: C: P: Di: C: Pot Output:	THM $SkyRoute(C, \mathcal{P}, Dist, \mathcal{L}, PoCab)$ set of cluster nodes with central positions probability set for all cluster nodes st: pairwise drive distance matrix of cluster nodes the length of suggested drive route Cab: the position of one empty cab	Offlind 8. 9. 10. The	e Pro Enum of <i>L</i> Prun Sub-1 Main with
\overrightarrow{R}_{s}	skuline: list of skyline drive routes.		
Online Processing			
1. Em	umerate all candidate routes by connecting		
Po	Cab with each sub-route of $\mathcal{R}_{sub}^{\mathcal{L}}$		
obt	ained in step 10 during Offline Processing		Fi
2. for	$i=2:\mathcal{L}-1$		
3.	Decide dominated sub-routes with i th		SC
	intermediate cluster and prune the corresponding		
4	candidates by using proposition 2		G
4.	Update the candidate set by filtering		~
5	the pruned candidates in step 3		Cč
0. ene	1 IOP		d
o. Sel of a	C from the loop above		a
7. Fin the	al typical skyline query to get $\overrightarrow{R}_{Skyline}$ from se candidate routes in step 6		

 $cessing(\mathcal{L}CP)$

- merate all sub-routes with length from \mathcal{C}
- e and maintain dominated Constrained routes with length of \mathcal{L} using proposition 3
- tain the remained non-dominated sub-routes length of \mathcal{L} , denoted as $\mathcal{R}_{sub}^{\mathcal{L}}$

udo-code of SkyRoute Algorithm

- rst use LCP to prune ome candidates
- radually prune andidates containing ominated sub-routes

An Overall Comparison

A Comparison of Search Time (Second) between BFS and $\mathcal{L}CPS$

10 Synthetic Pick-up Clusters					
	$\mathcal{L}=3$	$\mathcal{L} = 4$	$\mathcal{L} = 5$		
BFS	0.051643	0.300211	2.000949		
$\mathcal{L}CPS$	0.043750	0.165401	0.803290		
15 Synthetic Pick-up Clusters					
BFS	0.142254	1.925054	23.517042		
$\mathcal{L}CPS$	0.095364	0.611193	4.322053		
Real Data $(2-3PM)$					
BFS	0.045933	0.297187	1.991507		
$\mathcal{L}CPS$	0.036736	0.141536	0.622932		

An Overall Comparison

A Comparison of Search Time $(\mathcal{L} = 3)$ on the Synthetic Data set 3.5 O – BFS LCPS 3 ■ -SR(D&C)S – SR(BNL)S 2.5 Search Time (Sec) 2 1.5 1 0.5 0 12 14 18 10 16 20 Number of Pick-up Points