Frequent Regular Itemset Mining

Salvatore Ruggieri

Dipartimento di Informatica, Università di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy
ruggieri@di.unipi.it

ACM SIGKDD 2010 - Washington DC, USA

Motivation

Concise representations of frequent itemsets:

- alleviate the problems due to extracting, storing and post-processing a huge amount of frequent patterns.
- closed, free (+ negative border), non-derivable, disjunctive, ...

Motivation

Concise representations of frequent itemsets:

- alleviate the problems due to extracting, storing and post-processing a huge amount of frequent patterns.
- closed, free (+ negative border), non-derivable, disjunctive, ...
- through a compact, lossless representation, where itemsets whose support is derivable from others are pruned away

Motivation

Concise representations of frequent itemsets:

- alleviate the problems due to extracting, storing and post-processing a huge amount of frequent patterns.
- closed, free (+ negative border), non-derivable, disjunctive, ...
- through a compact, lossless representation, where itemsets whose support is derivable from others are pruned away
- at the cost of sacrificing readability and direct interpretability by a data analyst!

Motivation

tid	transaction
1	$a b c d e$
2	$a b c d$
3	b
4	$a c$

| cover | support | closed | free | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\{1,2\}$ | 2 | $a b c d$ | $d \quad b a \quad b c$ | |
| $\{1,2,3\}$ | 3 | b | b | |
| $\{1,2,4\}$ | 3 | $a c$ | $a \quad c$ | |

Motivation

tid	transaction
1	$a b c d e$
2	$a b c d$
3	b
4	$a c$

| cover | support | closed | free |
| :--- | :--- | :--- | :--- | :--- |
| $\{1,2\}$ | 2 | abcd | d ba $b c$ |
| $\{1,2,3\}$ | 3 | b | b |
| $\{1,2,4\}$ | 3 | $a c$ | $a \quad c$ |

What itemsets are represented by $a b c d$?

Motivation

tid	transaction
1	$a b c d e$
2	$a b c d$
3	b
4	$a c$

cover	support	closed	free	
$\{1,2\}$	2	abcd	$d \quad$ ba $\quad b c$	
$\{1,2,3\}$	3	b	b	
$\{1,2,4\}$	3	$a c$	$a \quad c$	

What itemsets are represented by abcd?

Contribution

Problem: itemsets represented by a closed itemset (its semantics) are not derivable from it in isolation.

Contribution

Problem: itemsets represented by a closed itemset (its semantics) are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an immediate semantics and interpretability, and a conciseness comparable to closed itemsets.

Contribution

Problem: itemsets represented by a closed itemset (its semantics) are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an immediate semantics and interpretability, and a conciseness comparable to closed itemsets.

Basic definitions

set of items \mathcal{I}

- transaction $($ tid,$X)$ with $X \subseteq \mathcal{I}$
- $\operatorname{cover}(I)=\{$ tid $\mid($ tid,$X) \in \mathcal{D}, X \subseteq I\}$
- $\operatorname{support}(I)=|\operatorname{cover}(I)|$.
- frequent itemsets $\mathcal{F}=\{X \subseteq \mathcal{I} \mid \operatorname{support}(X) \geq$ minsupp $\}$.

Basic definitions

set of items \mathcal{I}

- transaction $($ tid,$X)$ with $X \subseteq \mathcal{I}$
- $\operatorname{cover}(I)=\{$ tid $\mid($ tid,$X) \in \mathcal{D}, X \subseteq I\}$
- support $(I)=|\operatorname{cover}(I)|$.
- frequent itemsets $\mathcal{F}=\{X \subseteq \mathcal{I} \mid \operatorname{support}(X) \geq$ minsupp $\}$. θ-equivalence
- relation: $X \theta Y$ if $\operatorname{cover}(X)=\operatorname{cover}(Y)$.
- classes: $[X]=\{Y \subseteq \mathcal{I} \mid X \theta Y\}$.
- closed itemsets $Y \in \mathcal{C S}$ iff $\{Y\}=\max [X]$ for some X.
- free itemsets $Y \in \mathcal{F} \mathcal{S}$ iff $Y \in \min [X]$ for some X.

Extended itemsets: syntax

The set \mathcal{J} of extended items is defined as follows:

$$
E::=a|a ?|\left\{a_{1}, \ldots, a_{h}\right\}^{\star} \mid\left\{a_{1}, \ldots, a_{k}\right\}^{+}
$$

where a, a_{i} 's are items, $h \geq 0$ and $k>0$.
An extended itemset is a subset $R \subseteq \mathcal{J}$.
Ex. The intended meaning of $a b\{c d\}^{\star}$ is

$$
\{a b, a b c, a b d, a b c d\}
$$

The intended meaning of $a b ?\{c d\}^{+}$is

$$
\{a c, a d, a c d, a b c, a b d, a b c d\}
$$

Extended itemsets: semantics

Semantics $s_{e}(): \mathcal{J} \rightarrow \operatorname{Pow}(\operatorname{Pow}(\mathcal{I}))$ for extended items :

$$
\begin{aligned}
s_{e}(a) & =\{\{a\}\} \\
s_{e}(a ?) & =\{\{a\}, \emptyset\} \\
s_{e}\left(\left\{a_{1}, \ldots, a_{h}\right\}^{\star}\right) & =\left\{X \mid X \subseteq\left\{a_{1}, \ldots, a_{h}\right\}\right\} \\
s_{e}\left(\left\{a_{1}, \ldots, a_{k}\right\}^{+}\right) & =\left\{X \mid X \subseteq\left\{a_{1}, \ldots, a_{k}\right\}, X \neq \emptyset\right\} .
\end{aligned}
$$

Semantics $s(): \operatorname{Pow}(\mathcal{J}) \rightarrow \operatorname{Pow}(\operatorname{Pow}(\mathcal{I}))$ for extended itemsets:

$$
s\left(e_{1}, \ldots, e_{n}\right)=\left\{\cup_{i=1 \ldots n} X_{i} \mid X_{i} \in s\left(e_{i}\right), i=1 \ldots n\right\} .
$$

Extended itemsets: semantics

Semantics $s_{e}(): \mathcal{J} \rightarrow \operatorname{Pow}(\operatorname{Pow}(\mathcal{I}))$ for extended items :

$$
\begin{aligned}
s_{e}(a) & =\{\{a\}\} \\
s_{e}(a ?) & =\{\{a\}, \emptyset\} \\
s_{e}\left(\left\{a_{1}, \ldots, a_{h}\right\}^{\star}\right) & =\left\{X \mid X \subseteq\left\{a_{1}, \ldots, a_{h}\right\}\right\} \\
s_{e}\left(\left\{a_{1}, \ldots, a_{k}\right\}^{+}\right) & =\left\{X \mid X \subseteq\left\{a_{1}, \ldots, a_{k}\right\}, X \neq \emptyset\right\} .
\end{aligned}
$$

Semantics $s(): \operatorname{Pow}(\mathcal{J}) \rightarrow \operatorname{Pow}(\operatorname{Pow}(\mathcal{I}))$ for extended itemsets:

$$
s\left(e_{1}, \ldots, e_{n}\right)=\left\{\cup_{i=1 \ldots n} X_{i} \mid X_{i} \in s\left(e_{i}\right), i=1 \ldots n\right\}
$$

$s()$ is and-compositional: the meaning of an extended itemset can be obtained by looking (only) at the meaning of its items!

Regular itemsets

Ex. Let $\mathcal{D}=\{(1, a b),(2, a)\}$, and $R=a b$?. We have: $s(R)=\{a, a b\}$ and

$$
\operatorname{cover}(a)=\{1,2\} \neq\{1\}=\operatorname{cover}(a b)
$$

Regular itemsets

Ex. Let $\mathcal{D}=\{(1, a b),(2, a)\}$, and $R=a b$?. We have: $s(R)=\{a, a b\}$ and

$$
\operatorname{cover}(a)=\{1,2\} \neq\{1\}=\operatorname{cover}(a b)
$$

Extended itemsets are relevant to the FIM problem only when they denote itemsets with a common cover.

Regular itemsets

Ex. Let $\mathcal{D}=\{(1, a b),(2, a)\}$, and $R=a b$?. We have: $s(R)=\{a, a b\}$ and

$$
\operatorname{cover}(a)=\{1,2\} \neq\{1\}=\operatorname{cover}(a b)
$$

Extended itemsets are relevant to the FIM problem only when they denote itemsets with a common cover.
Def. An extended itemset R is said regular if for every $X, Y \in s(R)$ we have that $\operatorname{cover}(X)=\operatorname{cover}(Y)$.

Regular itemsets

Ex. Let $\mathcal{D}=\{(1, a b),(2, a)\}$, and $R=a b$?. We have: $s(R)=\{a, a b\}$ and

$$
\operatorname{cover}(a)=\{1,2\} \neq\{1\}=\operatorname{cover}(a b)
$$

Extended itemsets are relevant to the FIM problem only when they denote itemsets with a common cover.
Def. An extended itemset R is said regular if for every $X, Y \in s(R)$ we have that $\operatorname{cover}(X)=\operatorname{cover}(Y)$.
Other equivalent formulations:

- if $s(R) \subseteq[X]$ for some itemset X,
- if for every $X, Y \in s(R)$, $\operatorname{support}(X)=\operatorname{support}(Y)$.

Regular itemsets: concise representation

For a regular itemset R, we define

$$
\operatorname{cover}(R)=\operatorname{cover}(X) \quad \text { and } \quad \operatorname{support}(R)=|\operatorname{cover}(R)|
$$

where X is any element in $s(R)$.

Regular itemsets: concise representation

For a regular itemset R, we define

$$
\operatorname{cover}(R)=\operatorname{cover}(X) \quad \text { and } \quad \operatorname{support}(R)=|\operatorname{cover}(R)|
$$

where X is any element in $s(R)$.
Def. A finite set of regular itemsets \mathcal{R} is a concise repr. of \mathcal{F} if:
(a) $\cup_{R \in \mathcal{R}} s(R)=\mathcal{F}$, and
(b) for every pair $R_{1} \neq R_{2} \in \mathcal{R}, s\left(R_{1}\right) \cap s\left(R_{2}\right)=\emptyset$.

Regular itemsets: concise representation

For a regular itemset R, we define

$$
\operatorname{cover}(R)=\operatorname{cover}(X) \quad \text { and } \quad \operatorname{support}(R)=|\operatorname{cover}(R)|
$$

where X is any element in $s(R)$.
Def. A finite set of regular itemsets \mathcal{R} is a concise repr. of \mathcal{F} if:
(a) $\cup_{R \in \mathcal{R}} s(R)=\mathcal{F}$, and
(b) for every pair $R_{1} \neq R_{2} \in \mathcal{R}, s\left(R_{1}\right) \cap s\left(R_{2}\right)=\emptyset$.

How large is a concise representation \mathcal{R} ?

Regular itemsets: concise representation

For a regular itemset R, we define

$$
\operatorname{cover}(R)=\operatorname{cover}(X) \quad \text { and } \quad \operatorname{support}(R)=|\operatorname{cover}(R)|
$$

where X is any element in $s(R)$.
Def. A finite set of regular itemsets \mathcal{R} is a concise repr. of \mathcal{F} if:
(a) $\cup_{R \in \mathcal{R}} s(R)=\mathcal{F}$, and
(b) for every pair $R_{1} \neq R_{2} \in \mathcal{R}, s\left(R_{1}\right) \cap s\left(R_{2}\right)=\emptyset$.

How large is a concise representation \mathcal{R} ?

$$
|\mathcal{C S}| \leq|\mathcal{R}|, \text { but, in practice, }|\mathcal{C S}| \approx|\mathcal{R}|
$$

Towards mining a concise representation

Towards mining a concise representation

The (semantics of the) extended itemsets

$$
d\{a b c\}^{\star} \quad b a\{c d\}^{\star} \quad b c\{a d\}^{\star}
$$

are not pair-wise disjoint!

Towards mining a concise representation

The (semantics of the) extended itemsets

$$
d\{a b c\}^{\star} \quad b a\{c d\}^{\star} \quad b c\{a d\}^{\star}
$$

are not pair-wise disjoint!
We would like to express

$$
s\left(b a\{c d\}^{\star}\right) \backslash s\left(d\{a b c\}^{\star}\right)
$$

and

$$
s\left(b c\{a d\}^{\star}\right) \backslash\left(s\left(d\{a b c\}^{\star}\right) \cup s\left(b c\{a d\}^{\star}\right)\right.
$$

Non-compositional itemsets

Non-compositional items are extended items plus:

$$
E::=\left\{a_{1}, \ldots, a_{h}\right\}^{-}
$$

where $h \geq 0$, with the following semantics:

$$
s_{e}\left(\left\{a_{1}, \ldots, a_{h}\right\}^{-}\right)=\left\{X \mid X \subset\left\{a_{1}, \ldots, a_{h}\right\}\right\}
$$

Since we do expect $b \notin s\left(b\{b\}^{-}\right)$, we define:

$$
\begin{aligned}
s^{\prime}\left(e_{1}, \ldots, e_{n}\right)=\{ & X \in s\left(e_{1}, \ldots, e_{n}\right) \mid X \cap Y \subset Y \\
& \text { for every } \left.e_{i} \text { of the form } Y^{-}\right\} .
\end{aligned}
$$

$s^{\prime}()$ is not and-compositional.

Mining a concise representation

Let C be a closed itemset, and X_{1}, \ldots, X_{n} be its free itemsets.
A concise representation of $[C]$ is provided by

$$
N_{i}=X_{i}, X_{1}^{-}, \ldots, X_{i-1}^{-},\left(C \backslash X_{i}\right)^{\star}
$$

for $i=1 \ldots n$.

Mining a concise representation

Let C be a closed itemset, and X_{1}, \ldots, X_{n} be its free itemsets.
A concise representation of $[C]$ is provided by

$$
N_{i}=X_{i}, X_{1}^{-}, \ldots, X_{i-1}^{-},\left(C \backslash X_{i}\right)^{\star}
$$

for $i=1 \ldots n$.

$$
d\{a b c\}^{\star} b a\{d\}^{-}\{c d\}^{\star} \quad b c\{d\}^{-}\{b a\}^{-}\{a d\}^{\star}
$$

Mining a concise representation

Let C be a closed itemset, and X_{1}, \ldots, X_{n} be its free itemsets.
A concise representation of $[C]$ is provided by

$$
N_{i}=X_{i}, X_{1}^{-}, \ldots, X_{i-1}^{-},\left(C \backslash X_{i}\right)^{\star}
$$

for $i=1 \ldots n$.

$$
d\{a b c\}^{\star} b a\{d\}^{-}\{c d\}^{\star} \quad b c\{d\}^{-}\{b a\}^{-}\{a d\}^{\star}
$$

Next problem: rewrite N_{1}, \ldots, N_{n} into a set of equivalent pair-wise disjoint regular itemsets.

Mining a concise representation

$\frac{b a\{d\}^{-}\{c d\}^{\star}}{b a c ?}$ S4

Mining a concise representation

$$
\frac{b a\{d\}^{-}\{c d\}^{\star}}{b a c ?} \mathbf{S 4}
$$

$$
\frac{\frac{b c\{d\}^{-}\{b a\}^{-}\{a d\}^{\star}}{b c\{d\}^{-}\{a\}^{-}\{a d\}^{\star}}}{\frac{b c\{a\}^{-} a ?}{b c}} \mathbf{S} \mathbf{S} 4
$$

Mining a concise representation

$$
\frac{b a\{d\}^{-}\{c d\}^{\star}}{b a c ?} \mathbf{S 4} \quad \frac{\frac{b c\{d\}^{-}\{b a\}^{-}\{a d\}^{\star}}{\frac{b c\{d\}^{-}\{a\}^{-}\{a d\}^{\star}}{\frac{b c\{a\}^{-} a ?}{b c}} \mathbf{S} 4} \mathbf{S} 4}{\mathbf{S} 4}
$$

$\frac{b a c ? \quad b c}{b\{a c\}^{+}} \mathrm{M} 3$

Towards mining a concise representation

Splitting rules

$$
\begin{gathered}
\frac{R, X, Y^{-} \quad Y \cap X \neq \emptyset}{R, X,(Y \backslash X)^{-}} \mathbf{S 1} \quad \frac{R, X, Z^{\star} \quad Z \cap X \neq \emptyset}{R, X,(Z \backslash X)^{\star}} \mathbf{S} \mathbf{2} \\
\frac{R, \emptyset^{-}}{\text {fail }} \mathbf{S 3} \quad \frac{R,\{a\}^{-} \quad a \notin R}{R \backslash\{a ?\}\left[\{a, X\}^{-} \rightarrow X^{\star}\right]} \mathbf{S} 4 \\
\frac{R,\{a, Y\}^{-}}{} \quad a \notin R \quad Y \neq \emptyset \\
R \backslash\{a ?\}\left[\{a, X\}^{-} \rightarrow X^{\star}\right], Y^{\star} \quad R \backslash\{a ?\}\left[\{a, X\}^{-} \rightarrow X^{-}\right], a, Y^{-} \\
\mathbf{S 5}
\end{gathered}
$$

Rewritings implemented as procedure Covering (see paper).

Splitting rules

$$
c d\{a b\}^{-}\{a b\}^{\star}
$$

Splitting rules

First partition $s^{\prime}\left(c d\{a b\}^{-}\{a b\}^{*}\right) \cap\{X \subseteq \mathcal{I} \mid a \notin X\}$

$$
\frac{c d\{a b\}^{-}\{a b\}^{\star}}{c d b ?} \mathbf{S 5}
$$

Splitting rules

Second partition $s^{\prime}\left(c d\{a b\}^{-}\{a b\}^{\star}\right) \cap\{X \subseteq \mathcal{I} \mid a \in X\}$

$$
\frac{c d\{a b\}^{-}\{a b\}^{\star}}{c d b ? ~} \frac{c d a\{b\}^{-} b ?}{} \mathbf{S 5}
$$

Splitting rules

$$
\frac{c d\{a b\}^{-}\{a b\}^{\star}}{c d b ? \frac{c d a\{b\}^{-} b ?}{c d a} \mathrm{~S} 4} \mathbf{S 5}
$$

Splitting rules

$$
\frac{c d\{a b\}^{-}\{a b\}^{\star}}{c d b ? \frac{c d a\{b\}^{-} b ?}{c d a} \mathbf{S 4}} \mathbf{S 5}
$$

Merging rules

$$
\begin{aligned}
\frac{R \quad R, a}{R, a ?} \mathbf{M 1} & \frac{R \quad R, Y^{+}}{R, Y^{\star}} \mathbf{M} \mathbf{2} \\
\frac{R, b, a ? \quad R, a}{R,\{a, b\}^{+}} \mathbf{M 3} & \frac{R, Y^{+}, a ? \quad R, a}{R,\{a, Y\}^{+}} \mathbf{M 4} \\
\frac{R, Y^{+}}{R,\{a, Y,\}^{+}} \mathbf{M} \mathbf{Y} & \frac{R, Y^{+} R, Z^{+}, Y^{\star}}{R,\{Z, Y\}^{+}} \mathbf{M 6}
\end{aligned}
$$

Rewritings implemented as procedure Merging (see paper).

Frequent Regular Itemsets Mining

Algorithm RegularMine

Input: a transactional database \mathcal{D}
Output: a set $\mathcal{R}_{\text {out }}$ of frequent regular itemsets that is a concise representation of frequent itemsets
extract frequent closed itemsets $\mathcal{C S}$ from \mathcal{D} and, for each $C \in \mathcal{C S}$, the free sets in $[C]$
$\mathcal{R}_{\text {out }} \leftarrow \emptyset$
for every $C \in \mathcal{C S}$ do
let X_{1}, \ldots, X_{n} be the free sets in [C] ordered w.r.t. \preceq $\mathcal{R}=\cup_{i=1 \ldots n}$ Covering $\left(X_{i}, X_{1}^{-}, \ldots, X_{i-1}^{-}, C^{\star}\right) / /$ rules $S 1-S 5$ $\mathcal{R}_{\text {out }} \leftarrow \mathcal{R}_{\text {out }} \cup \operatorname{Merging}(\mathcal{R}) / /$ rules $M 1-M 6$
end for

Nondeterminism

Nondeterminism I: The splitting and merging rules are non-deterministic. The procedures Covering and Merging adopt a few heuristics to drive the rewriting.

Nondeterminism

Nondeterminism I: The splitting and merging rules are non-deterministic. The procedures Covering and Merging adopt a few heuristics to drive the rewriting.
Nondeterminism II: The order X_{1}, \ldots, X_{n} affects the (size of the) output.

Nondeterminism

Nondeterminism I: The splitting and merging rules are non-deterministic. The procedures Covering and Merging adopt a few heuristics to drive the rewriting.
Nondeterminism II: The order X_{1}, \ldots, X_{n} affects the (size of the) output.
We (experimentally) resort to [Dong et al. 2005]:
Def. $\quad X_{i} \preceq X_{j}$ iff $\left|X_{i}\right|<\left|X_{j}\right|$ or, $\left|X_{i}\right|=\left|X_{j}\right|$ and $X_{i} \preceq_{\text {lex }} X_{j}$ where $\preceq_{\text {lex }}$ is a lexicographic order induced by a total order items.

Experimental results: dense datasets

Experimental results: sparse datasets

free $\cdots \cdots \cdots$

T1014D100K $($ size $=100000)$

Experimental results: orderings and execution time

Conclusion and future work

Contribution:

- regular itemsets as an easy-to-understand concise representation
- RegularMine to mine frequent regular itemsets

Conclusion and future work

Contribution:

- regular itemsets as an easy-to-understand concise representation
- RegularMine to mine frequent regular itemsets

Future work:

- pushing RegularMine inside closed and free itemsets extraction
- use of regular itemsets in non-redundant association rules and in case studies

