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Mixture models

What are mixture models?

In statistics, a probability mixture model is a probability distribution that is a
convex combination of other probability distributions.

Suppose that the random variable X is a mixture of n component random
variables Y1 · · ·Yn. Then,

fX(x) =

n∑

i=1

ai · fYi(x)

for some mixture proportions 0 < ai < 1 such that
∑

i ai = 1.

For example, the distribution of the height of students in a class can be thought
of as a mixture of the distribution of the height of female students and the
distribution of the height of the male students.
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Mixture models

Using mixture models

I Using a mixture of random variables to model data is very common technique
in data mining, machine learning, and statistics

I Given a set of k components C = {C1, C2, · · · , Ck}, it is assumed that each
data point was produced by first randomly selecting a component Ci from C,
and generating attributes according to the distribution specified by Ci

I Classic application is the Gaussian Mixture Model. Data is seen as being
produced by taking a set of samples from a mixture of k Gaussians

I Often possible to accurately model even complex and multi-modal data using
very simple components
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Motivating examples

Shortcomings of classical mixture model

I A data point is produced by a single component

I A component must provide a generative distribution for all attributes of the
data space

I Conflicts with the underlying reality of many datasets

→ Multiple generative components may influence a data point
→ A generative component may have influence over only a subset of data

attributes
→ A generative component may have varying influence over data attributes
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Motivating examples

Example scenario

Real life situation: Retail store, items, customers
Goal: Build an informative model for buying patterns of different classes of
customers

With the classical mixture model:

I Each customer belongs to only one class

I Each customer class should attempt to completely describe all the buying
patterns of its members

I Highly unrealistic considering the diversity of customers and items for sale
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Motivating examples

Example scenario · · ·

More accurate and natural to explain the behavior of each customer as resulting
from influence of several customer classes:

I Each customer class may influence purchase of an item to a varying degree:

→ For example, a customer is an action-movies-fan, horror-movies-fan, and
parent

→ One of the items for sale is the animated movie Teenage Mutant Ninja Turtles

→ Being a parent will have a stronger influence on purchase of this item than the
other two classes.

→ Being a action-movies-fan will have a stronger influence than being a
horror-movies-fan

I Each data point can be modeled with high precision

I However allows learning very general classes such as parent that are
important, and yet cannot describe any data point completely
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POWER model

Formal definition of the model

POWER (PrObabilstic Weighted Ensemble of Roles) model

The proposed model consists of a mixture of k components
C = {C1, C2, · · · , Ck}. Associated with each component Ci is:

I An appearance probability αi

I A d-dimensional parameter vector Θi

→ d is the number of data attributes
→ Θij parameterizes the probability density function fj corresponding to the jth

data attribute Aj

→ For example, if fj is a normal random variable, then Θij is the mean µij and
std dev σij

I A vector of positive real numbers “parameter weights” Wi

→ wij specifies the strength of influence of component Ci over attribute Aj

→

P

j wij = 1
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POWER model

Data generation process

Each data point is generated by the following three step process:

I First, one or more of the k components are marked as “active” by performing
a Bernoulli trial with their appearance probabilities

I Second, for each attribute a “dominant” component is selected by performing
a weighted multinomial trial (using the parameter weights) amongst active
components

I Finally, each data attribute is generated using its parameterized density
function by borrowing the parameters from its dominant component
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POWER model

Data generation process · · ·

I Issue – because of Bernoulli trials, non-zero probability of selecting no
components

I Solution – make one of the components a special default component that is
always selected

→ Set default’s appearance probability α = 1
→ Acts as a “catch-all” or background distribution
→ Want the default component to actually generate a data attribute only when

no other component can
→ Set default’s all parameter weights to small user-defined constant ε

→ User can limit/strengthen its role by changing ε
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Learning the POWER model

Hierarchical Bayesian model
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Bayesian inference can be accomplished via a Gibbs sampling algorithm.
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Learning the POWER model

Hierarchical Bayesian model · · ·

αi|a, b ∼ β(·|a, b) i = 1 · · · k

mi,j |q, r ∼ γ(·|q, r) i = 1 · · · k, j = 1 · · · d

wi,j =
mi,j∑
j mi,j

ca,i|αi ∼ Bernoulli(·|αi) i = 1 · · · k

ea,j =

k∑

i=1

ca,i · wi,j a = 1 · · ·n, j = 1 · · · d

fa,j,i =
ca,i · wi,j

ea,j

a = 1 · · ·n, j = 1 · · · d, i = 1 · · · k

ga,j ∼ Multinomial(1,
−−→
fa,j) a = 1 · · ·n, j = 1 · · · d

xa,j ∼ fj(·|θga,j ,j) a = 1 · · ·n, j = 1 · · · d
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Learning the POWER model

Conditional distributions for model

parameters

F (αi|·) ∝ β(αi|a, b) · αnactivei

i · (1 − αi)
n−nactivei

nactivei =
∑

a

I(ca,i = 1)

ca,i = 1 if ∃j, ga,j = i

F (ca,i = 0|·) ∝ (1 − αi) ·
∏

j

fj(xa,j |θga,j ,j) · F (ga,j |ca,?, ca,i = 0, m)

F (ca,i = 1|·) ∝ αi ·
∏

j

fj(xa,j |θga,j ,j) · F (ga,j |ca,?, ca,i = 1, m)

F (ga,j = i|·) ∝ fj(xa,j |θga,j ,j) ·
wi,j · I(ca,i = 1)∑
i wi,j · I(ca,i = 1)

F (mi,j |·) ∝ γ(mi,j |q, r) ·
∏

a

∏

j

wga,j ,j · I(ca,ga,j
= 1)∑

i wi,j · I(ca,i = 1)
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Learning the POWER model

Challenges

I Assigning proper prior distributions for all model parameters

I Deriving analytical expressions for all the conditional distributions

I Update to parameter weights was very slow because of compute intensive
conditional

→ It can be easily approximated by a beta-pdf

I Difficult to visualize and identify results

→ Innovative scheme using KL Divergence
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Experimental evaluation

NIPS Papers Dataset

Dataset: NIPS full papers dataset – 1500 papers, 12419 unique words, 6.4
million total words. We consider 1000 most frequent words. Each document is
modeled as vector of 0s/1s based on absence/presence of word. So, input is 1500
x 1000 0/1 matrix.

Model: 21-component model with Bernoulli generators. Non-informative priors
for appearance probability and parameter weights. ε = 1

1000 .

Iterations: 2000 Gibbs iterations. Results are average over last 1000 iterations.

Details: http://www.cise.ufl.edu/~ranka/power/
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Experimental evaluation

NIPS Papers Dataset · · ·

Table 1: Highly-ranked words for some of the components learned from the NIPS
dataset. Plain text indicates high importance to the word, as well as a high Bernoulli
probability. Bold text indicates high importance but a low Bernoulli probability.

id α Words

1 0.3374 arbitrary, assume, asymptotic, bound, case, consider,
define, exist, implies, proof, theorem, theory

3 0.1497 acoustic, amplitude, auditory, channel, filter
frequency, noise, signal, sound, speaker, speech

5 0.1901 activity, brain, cortex, excitatory, firing, inhibition,
membrane, neuron, response, spike, stimuli, synapse

6 0.4025 activation, backpropagation, feedforward, hidden, input,
layer, network, neural, output, perceptron, training

7 0.1293 adaptive, control, dynamic, environment, exploration,
motor, move, positioning, robot, trajectory, velocity
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Experimental evaluation

NIPS Papers Dataset · · ·

id α Words

9 0.2785 class, classifier, clustering, data, dimensionality,
features, label, table, testing, training, validation

13 0.2597 dot, edges, field, horizontal, images, matching, object,
orientation, perception, pixel, plane, projection, retina,
rotation, scene, shape, spatial, vertical, vision, visual

14 0.2557 bayesian, conditional, covariance, density, distribution,
estimate, expectation, gaussian, inference, likelihood,
mixture, model, parameter, posterior, prior, probability

17 0.1192 analog, bit, chip, circuit, design, diagram, digital, gate,
hardware, implement, integrated, output, power,
processor, pulse, source, transistor, vlsi, voltage

19 0.3976 acknowledgement, department, foundation, grant,
institute, research, support, thank, university
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Related work

Related work

I Other hierarchical mixture models (Cadez et al., etc)

I Indian Buffet Process (Griffiths and Ghahramani, Heller and Ghahramani)

I Parsimonious mixtures (Graham and Miller)

I Latent Dirichlet Allocation LDA topic models (Blei et al.)
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