SIEMENS

Temporal pattern mining in symbolic time point and time interval data

Fabian Moerchen Siemens Corporate Research Princeton, NJ

> © Siemens Corporation, Corporate Research, 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Temporal pattern mining in symbolic time point and time interval data

SIEMENS

- I. Introduction
- II. Symbolic temporal data models
- **III.** Temporal concepts and operators
- **IV.** Patterns and algorithms for time point data
- V. Patterns and algorithms for time interval data
- **VI.** Quantitative temporal patterns
- VII. Preprocessing to obtain symbolic temporal data
- VIII.Applications of temporal patterns

Introduction

Introduction

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 3

Introduction Temporal Data Mining

SIEMENS

Temporal Data Mining

- Any data mining task involving some dimension of time.
 - Includes temporal association rules, evolutionary clustering, spatiotemporal data minig, trajectory clustering, ...

Time Series Data Mining

- Mining of sequence(s) of observations over time
 - Clustering
 - Classification
 - Indexing
 - Anomaly detection
 - Prediction
 - .
 - Temporal pattern mining
 - Temporal pattern languages
 - Pattern mining algorithms

Copyright © Siemens AG 2010. All rights reserved.

Introduction Different aspects of temporal pattern mining

SIEMENS

Temporal Data Models

How is temporal data represented? Time point vs. time interval

Temporal Concepts What are the desired semantics? Order vs. concurrency **Temporal Operators**

How are data elements compared and combined by the algorithms?

Copyright © Siemens AG 2010. All rights reserved. **Fabian Moerchen**, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Introduction Time point models, concepts, and operators

 In time point data models observation are associated with a specific point in time.

SIEMENS

- If several 'dimensions' are observed in parallel the model is multivariate.
- Most commonly mined concept is order or the less strict concurrency.

Copyright © Siemens AG 2010. All rights reserved.

Introduction Time interval models, concepts, and operators

 In time interval data models observation are associated with the time between two time points.

SIEMENS

- If several 'dimensions' are observed in parallel the model is multivariate.
- Most methods mine all three temporal concepts: order, concurrency, synchronicity.

Copyright © Siemens AG 2010. All rights reserved.

Temporal Data Models

Temporal Data Models

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Temporal Data Models Definition of terminology

SIEMENS

- Time is continuous, computers are binary.
- We assume temporal data is represented with discrete time points.
- A time series is a set of unique time points.
- A **time sequence** is a multi set of time points.
- A pair of time points defines a **time interval**, inclusively.
- Two intervals overlap if there is at least one time point that lies within both intervals.
- An **interval series** is a set of non overlapping time intervals.
- An interval sequence can include overlapping and equal time intervals.
- The series data types can be **univariate** or **multivariate**.

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Temporal Data Models Common models and transformations

SIEMENS

Copyright © Siemens AG 2010. All rights reserved.

Page 10

Temporal Data Models Common data bases

SIEMENS

Many (short) observations

- Website click streams
- Shopping profiles
- Gene expressions
- Headlines
- Twitter
- Scenes in video
- Musical melodies
- Shapes

Temporal Concepts and Operators

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 12

Temporal Concepts Semantic categories for temporal operators

Duration is the persistence of an event over several time points.

SIEMENS

- **Order** is the sequential occurrence of time points or time intervals.
- **Concurrency** is the closeness of two or more temporal events in time in no particular order.
- **Coincidence** describes the intersection of several intervals.
- **Synchronicity** is the synchronous occurrence of two temporal events.
- **Periodicity** is the repetition of the same event with a constant period.

Copyright $\ensuremath{\mathbb{C}}$ Siemens AG 2010. All rights reserved.

Temporal Operators Time point operators

- Time point operators expressing strict order: **before** / **after** (\rightarrow)
- Time point operator expressing concurrency: **close**

Time point operator expressing synchronicity: equals

- Special cases
 - With constraints: shortly before, closely after
 - With specific granularity: next business day

Copyright $\ensuremath{\mathbb{C}}$ Siemens AG 2010. All rights reserved.

Page 14

Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

SIEMENS

Temporal Operators Time interval operators

SIEMENS

Time interval operators

- Allen's interval relations [Allen 1983]
- Freksa's semi-interval relations [Freksa 1992]
- Reichs's interval and interval point relations [Reich 1994]
- Roddick's Midpoint interval relations [Roddick/Mooney 2005]
- Other operators [Villafane 1999], [Ultsch 1996], [Moerchen 2006]

Copyright © Siemens AG 2010. All rights reserved.

Temporal Operators Allen's interval relations

• 13 relations forming an algebra.

SIEMENS

- Any two intervals have exactly one of the relations.
- Invented in AI for temporal reasoning: given facts associated with time interval derive additional facts or answer specific questions.
- Later widely used in data mining.
- Disadvantages for knowledge discovery!
- Thresholds and fuzzy extensions solve some of the problems.

Copyright © Siemens AG 2010. All rights reserved.

Temporal Operators Freksa's semi-interval relations

- Semi-intervals: one interval boundary unknown.
- Two relations between start or endpoints of the two intervals suffice to uniquely identify the relation.
- Easier to represent incomplete or coarse knowledge.
- Not widely used in data mining (yet).
 - [Rainsford/Roddick 1999]
 - [Moerchen/Fradkin 2010]

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Temporal Operators Reich's interval/point relations

Interval end Points

- Extension of Allen's relation to points.
- Only 5 more relations while [Vilain 1982] had 13.
 - point finishes and inverse
 - point starts and inverse
 - point equals
- Also proposed relations for branching time to reason in multiple future worlds.
- Supported in principle by [Moerchen/Fradkin 2010]

Copyright © Siemens AG 2010. All rights reserved.

Page 18

Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

SIEMENS

Temporal Operators Roddick's mid-point interval relations

- Allen's relation extended by relation of each interval midpoints to the other interval.
- Two versions of overlaps shown: midpoints within other intervals (largely overlap) or not (overlap to some extend).
- 9 versions of overlaps
- Total of 49 relations!
- Designed to coarse data with arbitrary local order.
- Shares disadvantages with Allen's relations, in some respects even worse.

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Temporal Operators Other interval relations

A contains B contains C

- Contains is equivalent to
- (A equals B) or (B starts A) or (B during A) or (B ends A)
- [Villafane 1999]
- A,B,C approximately equal
 - Allow slight variations.
 - N-ary operator
 - [Ultsch 1996]
 - A,B,C coincide
 - Intersection of intervals
 - N-ary operator
 - [Moerchen 2006]

Copyright $\ensuremath{\mathbb{C}}$ Siemens AG 2010. All rights reserved.

SIEMENS

Temporal patterns Time point patterns

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 21

Time point patterns Frequent and closed patterns

SIEMENS

Frequent patterns

- Frequency = number of occurrences / size of database.
- Specify minimum frequency for patterns to be significant.
- Redundancy problem: Even if a sub-pattern has exactly same frequency as a super-pattern both are reported as frequent.

Closed frequent patterns

- Cannot make the pattern more specific without decreasing the support.
- Sequence example (adapted from [Wang/Han 2004])

Database
CAABC
ABCB
CABC
ABBCA
ВC

A B observed 4x B C observed 5x A B C also observed 4x C A B C observed 2x other extensions of A B C observed 1x

B C is closed
A B C is closed
A B is not

Copyright © Siemens AG 2010. All rights reserved.

Page 22

Time point patterns Substring patterns

SIEMENS

- Substring patterns
 - Sequence of symbols without gaps
 - Expresses concept of order
 - Example: $\mathbf{B} \to \mathbf{C} \to \mathbf{B}$

- Regular expression patterns
 - Extension to allow gaps (via wildcards), negations, repetitions, etc.
 - Example: $\mathbf{B} \rightarrow \neg \mathbf{C} \rightarrow \mathbf{A} \mid \mathbf{B}$

Copyright © Siemens AG 2010. All rights reserved.

Time point patterns Substring pattern algorithms

SIEMENS

Algorithms for substring patterns

- Special data structures are used to represent the data and derive frequent patterns efficiently.
- Suffix trees
 - Allowing wildcards [Vilo 2002]
 - Reporting over/under represented patterns [Apostolico et al. 2000]
- Suffix arrays
 - Optimal time [Fischer et al. 2006]
 - Space efficient [Fischer et al. 2007]
- Many applications in **bioinformatics**
 - Finding discriminative patterns
 - Sequence alignment

Copyright © Siemens AG 2010. All rights reserved.

Page 24

Time point patterns Sequential patterns

- Sequential patterns [Agrawal/Srikant 1995]
 - Sequence of (sets of) symbols
 - Expresses concept of order
 - Example: $\{B\} \rightarrow \{C\} \rightarrow \{A,D\}$

- Observed sets of symbols at each time point can contain more symbols.
- Gaps are allowed.
- Motivated by example of repeated purchases by customers, i.e., database of many short sequences.

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Time point patterns Sequential pattern algorithms

SIEMENS

- Algorithms for **sequential patterns**
 - AprioriAll [Agrawal/Srikant 1995],
 - SPADE [Zaki 1998]
 - PrefixSpan [Pei et al. 2001]
- Algorithms for closed sequential patterns
 - CloSpan [Yan et al. 2003]
 - BIDE (BIDirectional Extension checking) [Wang/Han 2004]
 - BIDEMargin [Fradkin/Moerchen 2010]
 - enforces margin of support difference among reported patterns
- Variations
 - Regular expressions [Garofalakis et al. 1999]
 - Multivariate data [Pinto et al. 2001]
 - Allow mismatches [Kum et al. 2003][Zhu et al. 2007]
 - Generators [Lo et al. 2008]

Copyright © Siemens AG 2010. All rights reserved.

Page 26

Time point patterns Episode patterns

- Episode patterns [Mannila et al. 1995, 1996, 1997]
 - Constrained partial order of (sets of) symbols.
 - Expresses concepts of order and concurrency.
 - Example: **C** → **A** and **D** → **B** within a time window

$$\begin{array}{c|c} A \\ B \end{array} \begin{array}{c} C \\ D \end{array} \begin{array}{c} A \\ D \end{array} \begin{array}{c} C \\ D \end{array} \begin{array}{c} C \\ B \end{array} \begin{array}{c} C \\ D \end{array} \begin{array}{c} C \\ B \end{array} \begin{array}{c} C \\ C \end{array} \begin{array}{c} A \\ C \end{array} \begin{array}{c} C \\ C \end{array} \begin{array}{c} A \\ C \end{array} \begin{array}{c} C \\ D \end{array} \begin{array}{c} A \\ D \end{array} \begin{array}{c} C \end{array} \begin{array}{c} A \\ D \end{array} \begin{array}{c} C \end{array} \begin{array}{c} A \\ D \end{array} \begin{array}{c} C \end{array}$$

- Serial episodes: Order relation between symbols (or episodes).
- **Parallel episodes**: Symbols or episodes observed within time window.
- Episodes: in principle arbitrary partial order of symbols, but often combination of serial and parallel episodes.
- Motivated by patterns in long message stream from telecommunication equipment.

Copyright © Siemens AG 2010. All rights reserved. **Fabian Moerchen**, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 27

Time point patterns Episode pattern algorithms

SIEMENS

- Apriori-style algorithms for episodes.
 - Given maximum window length
 - WINEPI: percentage of windows with the pattern [Mannila et al. 1995]
 - MINEPI: windows that do not contain sub-windows with the pattern [Mannila/Toivonen 1996]
 - Given maximum gap [Meger/Rigotti 2004]
- Algorithms for closed (groups of) episodes [Harms et al. 2001]
- Determining **significance** beyond the concept of frequency.
 - Significance of episodes against Bernoulli and Markov background models [Gwadera et al. 2005]
 - Formal relation of Episodes with HMM [Laxman et al. 2005]

Copyright © Siemens AG 2010. All rights reserved.

Page 28

Time point patterns Partial order patterns

- Partial order patterns [Casas-Garriga 2005]
 - Partial order of (sets of) symbols.
 - Expresses concepts of order and concurrency.
 - Example: $\mathbf{A} \to \mathbf{B}$ and $\mathbf{A} \to \mathbf{C}$ and $\mathbf{D} \to \mathbf{C}$

$$\begin{bmatrix} \mathbf{A} & \mathbf{C} & \mathbf{A} \\ \mathbf{B} & \mathbf{D} & \mathbf{D} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{C} & \mathbf{C} \\ \mathbf{D} & \mathbf{B} & \mathbf{B} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{C} \\ \mathbf{D} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{C} \\ \mathbf{D} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{C} \\ \mathbf{D} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{C} \\ \mathbf{D} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{C} \\ \mathbf{D} & \mathbf{C} \end{bmatrix}$$

- Order between some symbols (A and D) is unspecified (hence partial).
- Not equivalent to serial-parallel episodes! [Pei et al. 2006]
 - Example above cannot be expressed as combination of parallel and serial episodes.
 - Definition of [Mannila et al. 1995] captures this but algorithms focus on serial/parallel episodes and many other authors have done the same (or even only deal with serial episodes).

Copyright $\ensuremath{\mathbb{C}}$ Siemens AG 2010. All rights reserved.

Page 29

Time point patterns Closed partial order pattern algorithms

- Three step algorithm [Casas-Garriga 2005] [Moerchen 2006]
 - Mine closed sequential patterns.
 - Mine maximal conjunctive groups of non-redundant sequential patterns that are observed in the same windows. [Casas-Garriga 2005]
 - [Moerchen 2006]
 - Interpret sequential patterns as items and windows as itemsets.
 - Mine closed itemsets = maximal groups.
 - Remove redundant sequential patterns in each group
 - Convert each group to partial order [Casas-Garriga 2005]
 - Every sequential patterns is a path in the directed graph.

Copyright © Siemens AG 2010. All rights reserved.

Time point patterns Closed partial order example

Copyright © Siemens AG 2010. All rights reserved.

Page 31

Time point patterns Closed partial order pattern algorithms

- Efficient algorithm for closed partial orders [Pei et al. 2006]
 - Interpret edges in partial order as items.
 - TranClose: mine closed item (=edge) sets of transitive closure
 - ABC has edges $A \rightarrow B, A \rightarrow C, B \rightarrow C$
 - Reduce resulting patterns

Page 32

- Frecpo: PrefixSpan-like algorithms with pruning
 - Directly generates transitive reduction.
 - Forbidden edges: not $\mathbf{A} \to \mathbf{C}$ if already $\mathbf{A} \to \mathbf{B}$ and $\mathbf{B} \to \mathbf{C}$.
- Both do not allow for repeating symbols in patterns.
 - $\mathbf{E} \rightarrow \mathbf{B}$ is forbidden but it's not the 'same' B

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Time point patterns Conjunctive sequential patterns

- Mining conjunctive groups of sequential patterns [Raïssi et al. 2008].
- Closed sequential pattern mining algorithms use equivalence classes based on prefix.
- Non-derivable does not work for single sequential patterns and these classes.
 - Lower bound is always 0
- In contrast conjunctive groups of sequential patterns form equivalence classes.
 - see also [Casas-Garriga 2005], [Harms et al. 2001]
- Conjunctive groups can be used just similar to itemsets.
 - Mine closed groups of sequential patterns [Moerchen 2006]
 - Non-derivable groups of sequential patterns [Raïssi et al. 2008]
 - Generate sequential association rules [Raïssi et al. 2008]
 - Mine generators for groups of sequential patterns.

Copyright © Siemens AG 2010. All rights reserved.

Page 33

Time point patterns

Sequential patterns vs. Episodes vs. Partial Orders

Supports	Sequential Patterns	Episodes parallel	serial	serial/ parallel	Partial Orders	
Itemsets	✓	✓ Unordered set of symbols	✗ Typically not discussed	✗ Typically not discussed	 ✓ Often straightforward extension 	
Full partial order	x	×	x	✗ Typically not discussed	✓	
Closedness	✓ Easy - CloSpan	✓ Easy - Closed itemsets	✓ Easy - Equivalent to seq. patterns	 ✓ Requires looking at groups of episodes 	✓ Requires looking at groups of seq. pat.	
Condensed representation	✓ several	✓	✓	x	✓ Margin-closed	

Copyright © Siemens AG 2010. All rights reserved.

Time point patterns Summary

Use substrings if no g		_							
Use closed sequential patterns if gaps are and strict ordering are required.			Multivariate symbolic time series	Sym se	۵	order	concurrency	synchronicity	par
Partial orders are the most flexible representation but also more complex to mine.				polic time	uration				tial order
	Substrings	~				~			
	Sequential Patterns	~	~	√		~		✓	
	Episodes	~	~	√		~	~		\checkmark
	Partial orders	\checkmark	\checkmark	\checkmark		√	~	\checkmark	\checkmark

Temporal patterns Time interval patterns

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 36
Temporal Operators Allen's interval relations

• 13 relations forming an algebra.

SIEMENS

- Any two intervals have exactly one of the relations.
- Invented in AI for temporal reasoning: given facts associated with time interval derive additional facts or answer specific questions.
- Later widely used in data mining.
- Disadvantages for knowledge discovery!
- Thresholds and fuzzy extensions solve some of the problems.

SIEMENS

A1 patterns [Kam/Fu 2000]

- Combine two intervals with relation from Allen.
- Combine resulting pattern with another single interval.
- Ambiguous representation [Moerchen 2006]:

(((A starts B) overlaps C) overlaps D)

or

(((A before C) started by B) overlaps D)

SIEMENS

Fluents [Cohen 2001]

- Combine two intervals with relation from Allen.
- Combine two patterns.
- Ambiguous representation [Moerchen 2006]:

(A starts B) overlaps (C during D)

or

(A before C) starts (B overlaps D).

А Α Α С В В С В D D

	A	В	С	D
A	Equals	Starts	before	overlaps
В	Started by	Equals	overlaps	overlaps
С	after	Overlapped by	Equals	during
D	Overlapped by	Overlapped by	contains	Equals

[Hoeppner 2001]

- Set of intervals with pairwise relations of Allen.
- K(K-1)/2 relations for K intervals.

SIEMENS

- Not ambiguous but difficult to write out as rule [Moerchen 2006].
- Transitivity of Allen's relations can be used to derive some relations from others.

SIEMENS

= both =

A+=B+>D+>A->C+>B->C->D-

Sequence of interval boundaries [Wu/Chen 2007]

- Represent each interval with start and end points (A⁺ vs. A⁻).
- Pattern with K intervals represented by sequence of 2K boundaries.
- Not ambiguous and equivalent to Hoeppner, but more compact:

2K+(2K-1) vs. K(K-1)/2

Nested representation with counters [Patel et al 2008]

- Fix ambiguity of nested representation by adding counters for 5 relations
- K+5(K-1)
- Not as compact as Wu/Chen and not very readable.

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Time interval patterns Allen's relations pattern mining algorithms

- Apriori-style [Hoeppner 2001]
 - Combine two length k patterns with common k-1 prefix.
 - Use transitivity of Allen's relations to prune some candidates for the relations of the two kth intervals.

- B {contains, ended by, overlaps, meets, before} C
- Pruned relations: {after, met by, overlapped by, started by}

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Page 43

Time interval patterns

Allen's relations pattern mining algorithms

- Early work using only Apriori-style algorithms. Recently more efficient algorithms have been proposed:
 - H-DFS (Hybrid Depth First Search) [Papaterou et al. 2005]
 - Enumeration tree
 - ARMADA [Winarko/Roddick 2006]
 - Adaptation of sequential pattern mining algorithm to intervals.
 - TPrefixSpan [Wu/Chen 2007]
 - PrefixSpan using interval boundaries pruning patterns that are not valid interval patterns.
 - IEMiner [Patel et al 2008] (compares to TPrefixSpan and H-DFS)
 - Apriori using nested representation with counters and pruning.
 - KarmaLego [Moskovitch/Shahar 2009] (compares to Armada and H-DFS)
 - Enumeration tree exploiting transitivity.

Copyright © Siemens AG 2010. All rights reserved.

Page 44

Excursus: What's wrong with Allen?

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 45

Excursus Disadvantages of Allen's relation

SIEMENS

Allen is not robust

Small changes can result in different relations that intuitively describe the same pattern.

Copyright © Siemens AG 2010. All rights reserved.

Excursus Disadvantages of Allen's relation

Allen is ambiguous

The same relation describes intuitively different patterns.

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Page 47

Time interval patterns Unification-based Temporal Grammar

SIEMENS

Temporal Complex Pattern

Unification-based Temporal Grammar (UTG) [Ultsch 1996]

- Events: several intervals occur **more or less simultaneous**.
- Temporal Complex Patterns: sequence of Events.
- Annotations for duration of intervals and gaps.
- Detection of patterns can be formulated Prolog (hence unification-based)

Copyright © Siemens AG 2010. All rights reserved.

Time interval patterns Time Series Knowledge Representation

Chords

Phrase

Time Series Knowledge Representation (TSKR) [Moerchen 2006]

- Extension of UTG
- Tones represent duration with intervals.

SIEMENS

- Chords represent coincidence of Tones.
- Phrases represent partial order of Chords
- Compact, unambiguous representation with details on demand.
- Robust against noise in the interval boundaries.

Copyright © Siemens AG 2010. All rights reserved.

Time interval patterns TSKR mining algorithms

Time Series Knowledge Mining [Moerchen 2006]

- Methodology for mining from multivariate time series.
- Tone mining: discretization, segmentation, clustering.
- Chord mining: variation of itemset mining.
- Phrase mining: variation of partial order mining.

Copyright © Siemens AG 2010. All rights reserved.

Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

SIEMENS

Time interval patterns Phrase mining algorithm

SIEMENS

Phrase mining

- Transform Chords to itemset sequence: set of Chords observed over time interval.
- Mine sequential patterns with additional constraints: Only one Chord can be picked per time interval.
- Mine closed groups of sequential patterns.
- Convert to partial order.

Time interval patterns

SIEMENS

Templates for (partial) presence/absence

ed	ed	ed	ł	ре	ed	ре
ре	ре	ad	\cap	ad	ре	ad
ad	ре	ре	á	ad	ре	ed

Templates [Peter/Hoeppner 2010]

- Segment time axis
- 5 Interval predicates
 - present (∀)
 - absent (∀¬)
 - unconstrained (*)
 - exists (∃)
 - disappears (∃¬)
- Algorithm to search classification rules (not frequent patterns)
- Picks time segments and captures constraints on duration

Copyright © Siemens AG 2010. All rights reserved.

Time interval patterns Semi-interval Partial Order (SIPO) patterns

В С С В С В O⁻¹ D **O**-1 O-1 F O⁻¹ Α А Α В D **O**-1 В S⁻¹ В Α Α Α B В В С С С B+A+C-B-

Semi-Interval Partial Order (SIPO) [Moerchen/Fradkin 2010]

- Sequential pattern of interval boundaries without constraints.
 - Superset of full interval (Allen) patterns.

SIEMENS

- Matches more similar situations in the data.
- Partial order patterns of interval boundaries.
 - Even less constraints.
 - Even more matches.
- Can be applied to mixed time point / time interval data!

Copyright $\ensuremath{\mathbb{C}}$ Siemens AG 2010. All rights reserved.

Time interval patterns Semi-interval patterns for classification

Semi interval partial order (SIPO) pattern with better precision/recall Semi interval sequential pattern than any SISP or full interval (SISP) with better precision/recall pattern. than any full interval pattern. 87-67-SISP 2 Aller 87+ 67 87 (87+ 67 0.9 87-0.8 82+ 2 0.7 6 0.6 0.5 0 3 0.3 2 0. SIPO SISP 0.2 0.4 0.6 0.8 0.2 0.8 0.3 0.5 0.7 0.4 0.6 Precision Precision

'Name' class in Australian Sign language dataset.

'I' class in American Sign language dataset.

Copyright © Siemens AG 2010. All rights reserved.

Page 54

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Recall

Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

SIEMENS

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Time interval patterns Summary

Page 55

Temporal patterns Quantitative temporal patterns

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 56

Quantitative temporal patterns Quantitative sequential patterns

- Extend sequential patterns to capture typical durations between sequence elements.
- Different from constraints on maximum duration, gaps, etc. [Pei et al 2002] [Li 2008].
- Find time interval [min,max] between elements of sequence found by clustering [Yoshida 2000].
- Insert pseudo items corresponding to time intervals of user defined granularity [Chen 2003][Hirate/Yamana 2006].
 - Extension to fuzzy characterization of gaps [Chen/Huang 2005].
- Exhaustive for Temporally Annotated Sequences (TAS) with typical duration between elements of sequence using clustering [Gianotti et al. 2006].
- Trees representation of sequential patterns with split for different typical duration intervals [Nanni/Rigotti 2007].

Quantitative temporal patterns Quantitative interval patterns

- Episode patterns for intervals where each sequence element allows an interval starting at this time point to have a duration of [min, max] [Laxman et al. 2007]
- A priori pattern generation interleaving symbolic patterns generation with density based clustering [Guyet/Quiniou 2008]
 - K Intervals in a pattern for hypercube in K dimensions
 - Points are generated in the hypercube
 - EM clustering finds typical quantitative patterns.
- Interval templates of [Peter/Hoeppner 2010] capture duration of time axis segmentation in each pattern.

Preprocessing Converting to symbolic temporal data

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 59

Preprocessing Discretization

- Binning in value domain induces symbols per time point / intervals with repeating symbol.
- Non-temporal: Equal frequency/width histograms, K-Means
- **Persist**: Optimizes duration or resulting intervals [Moerchen/Ultsch 2005].

Copyright © Siemens AG 2010. All rights reserved.

Preprocessing Segmentation

SIEMENS

Segmentation

- Approximate signal with low order functions on time intervals.
- Induces time intervals with labels such as increasing or flat.
- Optimal algorithm with dynamic programming.
- Efficient approximations
 - Top down, Bottom up, etc.
 [Keogh et al. 2004]
- Multi-scale segmentation using wavelets (WTMM).
- Time series motifs (typical shapes) induce time intervals

Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Preprocessing Clustering and state estimation

- For multivariate time series
 - Vectors of values observed at each time point can be clustered.
 - Clustering generates symbol per time point / intervals of repeating symbols.
 - Hidden Markov Models (HMM) also incorporate temporal dynamics.

Copyright © Siemens AG 2010. All rights reserved.

Page 62

Preprocessing Other methods

SIEMENS

- Other methods can directly generate time points and intervals from non time series data
- Videos
 - Object detection and tracking
 - Surveillance
 - Traffic
 - TV (shot detection, audio features, closed caption)
- Documents
 - Topic and trend detection in news feeds.
 - Threads in newsgroups and mail folders.

Copyright © Siemens AG 2010. All rights reserved.

Applications

Applications How to use temporal patterns

Copyright © Siemens AG 2010. All rights reserved. Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Page 64

Applications Exploratory data analysis

SIEMENS

Find frequent patterns in database (prior to event of interest)

- Analyze feature to understand data generating process.
- Analyze temporal relations quantitatively.
- Model normality in the data.
- Find rare patterns
 - May indicate potential problems (intrusions, failures).
- Identify uninteresting information
 - Apply filters and constraints and repeat mining.

Applications Exploratory analysis in sports medicine

SIEMENS

Time Series Knowledge Mining [Moerchen 2006]

Data provided by Dr. [Olaf Hoos, Department of Sports Medicine, Philipps-University Marburg

Copyright © Siemens AG 2010. All rights reserved.

Page 66

SIEMENS

Temporal data mining for root-cause analysis of machine faults in automotive assembly lines [Laxman et al. 2009]

- Fault traces from automotive manufacturing lines.
- Frequent episode mining in fault data.
 - Mining episodes of intervals.
 - Evaluating significance of episodes with HMM.
- Incorporate expert knowledge and plant floor layout to filter results.

Cannot recover from this position. Electrician required.

Copyright © Siemens AG 2010. All rights reserved.

Applications Exploratory analysis in software logs

SIEMENS

Mining Patterns and Rules for Software Specification Discovery [Lo/Khoo 2008]

- Reverse engineer software specifications from execution traces
- Example: JBoss Transaction manager setup

Anomaly Intrusion Detection Systems: Handling Temporal Relations between Events [Seleznyov 1999]

- Use Allen's relations to represent normal user behavior.
- Alerts for violations of normal behavior.

Copyright © Siemens AG 2010. All rights reserved.

Analysis of ICU Patients using the Time Series Knowledge Mining Method [Moskovitch et al. 2007]

- Discretized numerical sensor data from ICU patients (blood pressure, heart rate, body temperature, ...)
- Mined TSKM patterns for each class
 - Mechanically ventilated for more than 24h vs. not.
- Quality measured by distance of pattern sets.
- Persist discretization and TSKM patterns achieved better class separation than human expert.

Applications Exploratory analysis in meteorology

Automatic Analysis of hydrologic time series using Time Series Knowledge Mining to identify system states [Gronz et al. 2008]

- Discretized hydrologic time series (soil moisture, temperature, discharge, ...)
- Mined TSKM patterns to identify system states.
- Built fuzzy models of Takagi-Sugeno-type to calculate and predict discharge.
- 'The usage of TSKM enabled the identification of two soil moisture time series as potential state variables. '
- 'The fuzzy systems generated were more efficient than all previously generated models, even if those models contained expert knowledge.'

Applications Predictive modeling

Generate class association rules from patterns

- Temporal patterns that end in a class label can be used for prediction.
- Use patterns as features for classification
 - Occurrence of pattern as binary feature for SVM or logistic regression.
- Find discriminative patterns
 - Scoring with InfoGain, Mutual information, etc.
- Directly mine discriminative patterns
 - Rule based learner with Allen's relations [Hoeppner/Topp 2007]
 - Generalized Sequential Decision Tree [Xing/Dong 2008]
 - See also ICDM 2008 Tutorial [Cheng et al. 2008]

Copyright © Siemens AG 2010. All rights reserved. **Fabian Moerchen**, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Applications Predictive modeling for scene classification

A better tool than Allen's relations for expressing temporal knowledge in interval data [Moerchen 2006]

TSKR pattern precisely describe the actions in the scene.

The pattern using Allen's relations explains only fragments of the actions.

BLUE-CONTACTS-RED HAND-TOUCHES-BLUE+RED HAND-HOLDS-RED

Scenes	TSKR		Allen/Höppner	
	Precision	Recall	Precision	Recall
pick-up	100.0	100.0	42.3	36.7
put- $down$	97.8	97.8	41.9	60.0
stack	100.0	93.3	80.0	66.7
unstack	100.0	93.3	100.0	90.0
assemble	100.0	93.3	100.0	100.0
disassemble	100.0	80.0	76.5	86.7

Copyright © Siemens AG 2010. All rights reserved.

SIEMENS

Mining Relationships Among Interval-based Events for Classification

[Patel et al. 2008]

- Rule based classifier with Allen patterns of high information gain.
- Hepatitis classification.

Multivariate Time Series Classification with Temporal Abstractions

[Batal et al. 2009]

- Using subset of Allen relations to find patterns.
- Binary vectors of pattern occurrence input to classifiers (SVM).
- Predict HPF4 test for patients under Heparin to detect (and prevent) transient prothrombotic disorder.

In both studies using the temporal information improved the classification performance significantly.

Copyright © Siemens AG 2010. All rights reserved.

Page 73

Applications Other

SIEMENS

Information retrieval

- Query longitudinal patient records to verify hypothesis [Plaisant et al 2008]
- Retrieval of scenes from video archive [Snoeck/Worring 2004].

Bioinformatics

- Find patterns in genetic sequences.
- Find patterns in sequence of experiments.

Log mining

- Typical traversal on web sites.
- Frequent sequences of search terms.
- Alarms in telecommunication networks.
- Workflow mining [Berlingerio et al. 2009].

Fabian Moerchen, Knowledge & Decision Systems, Siemens Corporate Research, Princeton, NJ

Temporal pattern mining in symbolic time point and time interval data

Summary

- Introduced data models, patterns, and algorithms for point and interval data.
- **Preprocessing** to convert other data into symbolic temporal data.
- Examples of applications using temporal patterns for data mining.

Research opportunities

- **Algorithms**: efficiency, error tolerant patterns, data streams,...
- Interestingness: pattern significance, expert knowledge, ...
- **Classification**: directly mine patterns predict events (early).
- Anomaly detection: learn to distinguish normal from abnormal behavior for symbolic temporal data based on patterns.
- **Applications** in medicine, finance, maintenance, meteorology, ...

Copyright © Siemens AG 2010. All rights reserved.

Page 75

Temporal pattern mining in symbolic time point and time interval data

Thank you!

Please send any feedback to fabian.moerchen@siemens.com

www.siemens.com

www.usa.siemens.com/en/about_us/research/home.htm

More material:

www.timeseriesknowledgemining.org (bibliography, slides, etc.)

Fabian Moerchen: Unsupervised pattern mining from symbolic temporal data, SIGKDD Explorations 9(1), ACM, pp. 41-55, 2007

SIEMENS

We are hiring!