Cloud security and OpenStack

Primož Cigoj Laboratorij za odprte sisteme in mreže IJS-E5

www.kc-class.eu

Outline

- Cloud computing
 - General overview
 - Deployment and service models
- Security issues
 - Threats
 - CSA / NIST / ENISA
 - Data protection, privacy, cryptography, identity management
- OpenStack
 - Components overview
 - Security issues (identity provisioning, authentication, data protection)
- Conclusion and future work

Cloud computing

• Definitions:

- Gartner "a style of computing where massively scalable IT-enabled capabilities are delivered 'as a service' to external customers using Internet technologies"
- NIST "a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction"

Main characteristics:

- Non-functional aspect (among the providers are very different)
 - flexibility, reliability, quality of service (QoS), availability, accessibility
- Business aspect (an important reason for introducing cloud computing in business organizations)
 - reduce costs, pay-as-you-go model, return on investment (ROI), green IT
- Technical aspect (realization of non-functional and financial aspects)
 - virtualization, several rental model, security, privacy and regulation compliance, self-service, automation, data management, APIs, software support, development, etc.

Deployment models

- Public cloud
 - services and facilities are available through the internet
- Private cloud
 - designed exclusively for a specific organization (local hosting)
- Hybrid cloud
 - composed of two or more different cloud infrastructure (linked together)

Service models

- Software as a Service (SaaS)
 - provide the consumer with the use of provider's applications running on a cloud infrastructure
- Platform as a Service (PaaS)
 - a way to rent hardware, on which cloud customers are able to develop and implement applications
- Infrastructure as a Service (IaaS)
 - the consumer can implement any software, including operating system and applications

Present time = A lot of infrastructures:

• Hyper-V, VMware, Nimbus, OpenStack, etc.

Problem definition

- The biggest obstacle for users in use of cloud is security!
- A popular approach is to create, publish and share server images with other users
- Trust model cloud provider & user is well-defined
 - Amazon is not going to hurt you:)
- What about image provider?
 - Users can create and share images too (blurry ???)
- What about data protection?
 - Admin can access our data, unencrypted data, etc.

Security issues

- When it comes to data hosting by external companies it is an interesting, economic model, that induces security concerns. Security issues are known, discussed but not resolved entirely.
- CSA / NIST / ENISA
- Threats:
 - Abuse in use of cloud computing
 - Insecure interfaces and APIs
 - Malicious insiders
 - Shared technology issues
 - Data loos or leakage
 - Account or service hijacking
 - Unknown security profile

Data protection

- The main data protection risks:
 - loss of data by third-party service providers
 - unauthorized access to your data
 - malicious activities targeting your service provider (hacking, viruses)
 - poor internal IT security compromising data protection
 - deletion of data

Privacy

- Data storage => Where is located?
- Is the service provider owned or controlled by a foreign company?
- Destruction => What happens when the contract is terminated?
 - Is data destroyed or can be retrieved?
- Who is responsible for protecting privacy?
- Privacy breaches
- Risk management

Cryptography

- When it comes to data encryption, cloud providers still have a long road ahead.
- Alex Staomes, an iSec Partners researcher, claimed that cloud computing should be approached from the cryptographic angle.
- Security questions for cloud providers:
 - Data on write: Are files transferred to/from cloud servers encrypted by default?
 - Data at reset: Are files stored on cloud servers encrypted by default?
 - Data retention: If files on cloud servers are encrypted and there is a request from law enforcement to decrypt data, than what do you do?

Identity management

- Registration of identities
 - organizations that transfer their user accounts in the cloud must make sure to update the management of the user accounts
- Authentication
 - it is important the authentication of users should be managed and implemented in a trustworthy way (one time password or SSO more protected; classic username and password approach less protected)
- Authorization
 - specifies what rights every individual user account have in the cloud
- Federation of identities
 - is it possible to establish a single application (SSO)?
- Access control
 - access control requirements vary widely depending on whether the end-user is individual use or an organization.

OpenStack

- OpenSource platform to build private and public clouds.
- We will concentrate on the following:
 - Review of existing components
 - Authentication
 - Authorization
 - Recommendations

OpenStack

The Birth of Openstack Timeline

Overview of versions

- Austin (21. October 2010)
- Bexar (3. Februar 2011)
- Cactus (15. April 2011)
- Diablo (22. September 2011)
- Essex (5. April 2012)
- Folsom (Fall 2012)

OpenStack

Components

- OpenStack Compute (nova)
 - Provision and management of large networks of virtual machines.
- OpenStack Object Storage (Swift)
 - ➤ Create petabytes of reliable storage using standardized hardware.
- OpenStack Image Repository (Glance)
 - Catalog and manage massive libraries of server images

OpenStack – General overview

DIABLO version	Authentication	Authorization	Issues	Suggestions for improvment
Compute	keystone	Token	Simple password / unprotected passwords in novarc file	Password complexity/ SSL
Object Storage	swAuth/tempAuth (keystone)	Token	Unprotected passwords/non-complex passwords	SSL / Password complexity and keystone usage
Image Service	Keypairs (key pairs)		Keys are publicly accessible, if not stored in the right location	Correct read/write permissions

OpenStack (Object Storage)

- User management is role based
 - Users are not granted to administrate any users themselves
 - Admin can add users to an account which he is allowed to administrate
 - Reseller admin has admin permissions on all of the accounts and cannot add other Reseller admins
 - Super admin is the most powerful user who can perform all user management procedures, including adding Reseller Admins

OpenStack (Object Storage)

	devAuth	swAuth	tempAuth
Admin (unprotected password)	/etc/swift/auth- server.conf	/etc/swift/proxy- server.conf	/etc/swift/proxy-server.conf
Users (unprotected passwords)	SQLite DB	JSON-encoded text files	/etc/swift/proxy-server.conf
Access to .conf and db files	Anyone	Owner of .conf file	Owner of .conf file
Used in Diablo version	Dropped	Optional	Built-in
Admin has access to all date of users	Yes	Yes	Yes

Object Storage - Passwords

- Current user authentication is not in accordance with CSA
 - Password in plain text format
 - Minimal password length is not determinited (only one character can be used)
 - Password complexity
- Weakness in tempAuth identified and reported to OpenStack community
- Solution?
 - Access rights

```
openstack@openstack-proxy:/etc/swift$ ll auth.db
-rw-r--r-- 1 swift swift 7168 2011-03-09 00:51 auth.db
```

- Python module hashlib
- Encryption of super admin password in .conf file
- Use of SSL

ObjectStorage – Portability of stored data

• Administrator has the possibility to retrieve authentication data of users

- Different types of administrators:
 - Super Admin, Reseller Admin, Admin
 - Reseller Admin
 - > can obtain the URL address of existing users
 - > can download or even delete files belonging to any user on any of the accounts
- Solution? Data encryption before transmission!

OpenStack - keystone

- OpenStack has recently added support for identity service Keystone
- Currently supports:
 - Authorization with tokens and authorization service
 - Connection with LDAP
- In future versions it will be possible to connect with:
 - OAuth (Open Authorization)
 - openID (Authentication mechanism)
- Data storage in SQLite DB or MySQL

The Keystone Identity Manager

OpenStack (Tokens)

- Authorization (security token generation)
 - Security tokens in OpenStack play the same role as sessions identifiers for web applications
 - Tokens are stored in /etc/swift/account.ring.gz
 - Python UUID version 4 is used to to generate tokens, which use
 - /dev/random (Ubuntu) as a source of randomness

OpenStack – Reliability

- Hazard perception?
 - Server load monitoring
 - CPU, memory etc.
- Isolation of infected
- Disabling access to an attacker
 - Network filtering (firewall)
 - Disabling user account

Recomendation

- ObjectStorage (Swift)
 - For development and testing is recommended to use tempAuth
 - For production is recommended to use swAuth or Keystone
- Password protection
- Data encryption
- Security portal (recently established)
 - http://openstack.org/projects/openstack-security/
- Subscribe to mailing list

Future work

- Cloud computing has many outstanding security concerns, some are technical, thus involving mechanisms for data processing, reliability, performance, etc.
- Therefore exploration does not STOP there and a lot of work can be done:
 - scripts for checking the security mechanisms for any deployment model in OpenStack (Swift part is done already)
 - SSL connections are set at the first install
 - Single-Sign-On for different cloud platforms and providers

