Theories of the Explosive Death of Massive Stars

Adam Burrows, Eli Livne, Luc Dessart, Christian Ott (JINA postdoc), Jeremiah Murphy (JINA Fellow) Supported by: SciDAC NSF JINA

C

Multi-Dimensional Core-Collapse Simulations: Explosion Mechanisms (A. Burrows, L. Dessart, E. Livne, C. Ott, I. Hubeny, & J. Murphy)

2 1/2-D Multi-Group Radiation Magneto-Hydrodynamic Capability: VULCAN

New BETHE Code Development: Multi-D Neutrino Mechanism

BETHE: Hydro

Compatible Arbitrary-Lagrangian-Ealerian (ALE) hydrodynamics for Unatractared Grisia wing the Stoppon Operator Method *2nd-ondre biomed- and sign-preserving Remap for arbitrary polygonal grids *Arbitrary moving grid *Casenal EOS environ (Grovay Solver

Phile Economy Solver or Drissen Gravity Solver so discretized using Support Operator Method ulti-grid preconditioner, GMRES acceleration

BETHE: Transport

vation : a need for a fast and transport solver for supernovae an other astrophysical simulations

3D General-Relativistic Rotational Collapse: Gravitational Radiation

Shock and Core Oscillation to Late Explosion

Onion Skin Structure: The Mote in the Eye of the Storm

Courtesy of Tom Weaver

SN1987a (Pete Challis)

SN1987a (Pete Challis)

NuSTAR will map the remnants of recent supernova explosions, testing theories of where the elements are born

NuSTAR will measure and map the ⁴⁴Ti lines at 68 and 78 keV in historic remnants: Tycho, Kepler, Cas A and SN1987A

Important Questions in Supernova Theory

- Mechanism of explosion?
- Pulsar Kicks (proper motions)?
- Nucleosynthesis: Nickel, etc. Yields?
- R-process site?
- Blast Morphology (and polarization)?
- Pulsar Spins?
- Pulsar/AXP/Magnetar B-fields?
- Black Hole formation?
- Systematics with progenitor (and role of rotation/magnetic fields)?
- Connection with GRBs and Hypernovae?

Mechanisms of Explosion

- Direct Hydrodynamic Mechanism: always fails?
- Neutrino-Driven Wind Mechanism, ~1D (Burrows 1987) Lowest-mass massive stars, ~spherical (e.g., 8.8 solar masses, Kitaura et al. 2006)
- SASI-aided (Blondin et al. 2003) Neutrino-Driven Wind Mechanism, 2D (e.g., 11.2 solar masses, Buras et al. 2006)
- Neutrino-Driven Jet/Wind Mechanism, Rapidly rotating AIC of White Dwarf (Dessart et al. 2006)
- Acoustic Power Mechanism (after delay), all progenitors explode (Burrows et al. 2006,2007a)
- Nuclear-burning aided? (Mezzacappa et al. 2006)
- MHD Jet Explosions (e.g., Burrows et al. 2007b)
- The Key feature of almost all mechanisms is the Breaking of Spherical Symmetry

Multi-D: Simultaneous Explosion and Accretion is the Key?

- Neutrino Mechanism: Anisotropic l=1 explosion --> lower ram pressure at head, larger neutrino heating region, while accretion elsewhere maintains neutrino luminosity to drive the explosion
- MHD-Rapid rotation: Explosion along poles, accretion of free rotational energy at equator (engine)
- Acoustic Mechanism: Explosion in one direction, accretion funnels from another, powering oscillation to maintain acoustic power

Issues/Problems

- Neutrino-driven wind explosions are "under-energetic": ~0.05 to 0.2 Bethes, or don't work (in 2D): What of M > ~12 solar masses?
- 3D effects may be needed to save the day for the neutrino mechanism for most progenitors and to achieve ~1 Bethe energies (last chance?); but note Janka's 15 solar mass model; Better and Multi-D Neutrino Transport?
- Long delay for Core-oscillation / Acoustic mechanism: Does something else precede it? Can the core modes achieve the required amplitudes?
- MHD Jets: Rapid Rotation necessary

VULCAN/2D Multi-Group,Multi-Angle, Time-dependent Boltzmann/Hydro (6D)

- Arbitrary Lagrangian-Eulerian (ALE); remapping
- 6 dimensional (1(time) + 2(space) + 2(angles) + 1(energy-group))
- Moving Mesh, Arbitrary Grid; Core motion (kicks?)
- 2D multi-group, multi-angle, S_n (~150 angles), time-dependent, implicit transport (still slow)
- **2D MGFLD**, rotating version (quite fast)
- Poisson gravity solver
- Axially-symmetric; Rotation
- MHD version ("2.5D") div B = 0 to machine accuracy; torques
- Flux-conservative; smooth matching to diffusion limit
- Velocity-dependent terms: advection included (DI/dt), but not yet Doppler/Aberation terms
- Parallelized in energy groups; almost perfect parallelism
- Energy redistribution: explicit
- New Implicit Hydro version
- Livne, Burrows et al. (2004,2007)
- Burrows et al. (2006,2007), Ott et al. (2005); Dessart et al. 2005ab

Density Profiles of Supernova Progenitor Cores

Neutrino-Driven Wind Explosions: Low Mass and AIC

Current Status of the Neutrino Mechanism

- Spherically-symmetric neutrino mechanism might work for O/Ne/Mg cores (e.g., 8.8-solar-mass model: Kitaura et al. 2006), powered by neutrino-driven wind, but underenergetic: ~10⁵⁰ ergs
- 11.2-solar-mass model of WHW (2002) might explode by the convective/SASI (2D) neutrino-driven mechanism (Buras et al. 2006) , aided by density cliff, but underenergetic: >10⁴⁹ ergs (mantle binding?), other progenitors very problematic (fizzle, but 3D??)
- Accretion-Induced Collapse (AIC): neutrino-driven jet/wind mechanism; underenergetic (~ few x 10⁵⁰ ergs) as well (Dessart et al. 2006)
- Note: Janka's recent 15 solar mass model? Neutrino-driven, long timescale (580 ms)
- 3D may be needed to explode other/most progenitors

8.8-Solar mass Progenitor of Nomoto: Neutrino-driven Wind Explosion First shown al. 2006 NOTE THAT FOLLOWS: TWO SHOCKS! **Burrows** ONeMg: 8.8 Msun 1987 Time = -50.0 ms 300.00 km Radius =

1) What is the Essence of the Neutrino Mechanism

2) How can it "be made" to work?

Heating and Cooling; The Effect of an Extra Source

"Protoneutron Star Convection"

Ledoux (S/Y_e?) and/or Doubly-Diffusive Convection? Can it Boost the Driving Neutrino Luminosities? (Wilson & Mayle 1988; Burrows 1987)

New study by Dessart et al. 2005

Accretion-Induced Collapse of O-Ne-Mg White Dwarfs

Dessart, Burrows, Ott, Livne, Yoon, & Langer 2006 Rapid Rotation!

AIC: 1.92 solar masses:

Accretion-Induced Collapse with Magnetic Fields

Dessart et al. 2007

Rapid Rotation!

Core Oscillation/Acoustic Power Mechanism

Time = -0.50 ms

Width = 50.00 km

Analytic l=1 g-mode oscillation:

Frequency-Time Evolution of Pulsating Core at 30 km

Inner 600-km Look at the Advective-Acoustic Instability

Entropy Profile along Pole versus Time after Bounce

Power Comparisons: 11 Solar-Mass model

Computational Context Needed to Explore Acoustic Mechanism

- Most calculations were stopped after 200-300 ms
- Other grid-based codes excised the core, did the calculations on a 90° wedge, or followed the core in 1D, completely suppressing core oscillations
- One key was the computational liberation of the core to execute its natural multi-dimensional motions
- Another key was patience to perform the calculations to very "late" times
- Crucial capabilities: 1) Momentum conservation, 2) "Cartesian-like" grid in the core (Courant condition), 3) High-precision gravity solver, 4) Moving grid (to maintain high-resolution under core)
- But, are the g-mode amplitudes large enough to explode the star?

MHD Jets and RMHD Simulations of Core Collapse: Rapid Rotation

Burrows, Dessart, Livne, Ott, & Murphy 2007; Dessart et al. 2007

Rotation Winding, the MRI and B-field Stress effects

115.01256580000

Shibata et al. 2007

(33 ms of post-bounce evolution)

1	1	1	1	1	1	٢	1	۲	*	1	ŝ	1	1	1	1	ľ	÷	1	-	-	L.	-	L	-	1	~	-	1	1				1	~	1	1	15	
1	1	-	1	1	1	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	~	~	•	~	~	~	~	~		1
1	1	1	1	1	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	-	~	~	~	1	1	1		-
1	1	1	1	1	1	1	-	-	1	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	~	*	-	*	~	1	1	1	10	1
1	1	/	1	1	1	1	1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	\sim	*	~	~	*	~	Ν.	1	× 1		+
1	1	1	1	1	1	-	-		-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	~	~	~	~	~	*	*	~	~	1	*	1		1
1	1	1	1	1	1	~	-		1	-	1	-	-	1	-	-	-	-	-	-	-	~	~	-	~	~	~	~	*	•	*	*	*	×	\$	1	-	1
1	1	ϵ	1	1	1	1	1	1	1	1	-	1	-	-	-	-	-	-	-	-	-	~	~	~	-	~	~	~	x	*	*	×	*	*	x	3	5	+
1	1	1	1	1	1	1	1	1	1	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	•	*	*	*	*	*	•	1	x		I
1	1	*	1	1	,	1	1	1	1	1	,	*	1	-	*	-	-	-	-	~	-	-	-	-	-	*	*	*	*	*	*	*	*	٠	x	2		+
1	1	1	1	1	1	1	1	1	*	1	1	1	1	1	1	-	-	-	-	-	-	~	~	~	~	1	~	~	*	*	*	*	*	1	8	3	D	L
1	1	t	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	4	-	~	~	~	~	~	•	×	*	*	*	5	\$	x	8	1.1	. 1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	7	-	-	-	~	~	~	~	~	N	1	1	۲	X	X.	x	1	x	3	1	5
1	1	1	\$	\$	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	17	*	*	~	1	1	1	1	1	۲	1	X	1	1	¥.	3	1	1
1	1	\$	1	1	7	1	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	*	~	1	1	1	1	1	1	1	1	X.	1	x	х.	х.	x 1	1
1	1	J	1	1	1	t	t	+	+	1	1	1	$\xi_{\rm c}$	1	1	1	1	-	-	-	\mathbb{R}^{2}	~	~	×	1	5	5	1	4	٩	1	Y	1	3	1	3	¢ I	- 5
1	1	j.	1	ſ.	ſ.	1	1	+	+	1	1	1	1	1	ϵ	1	1	-	-	-	*	*	1	x	X.	5	١	N.	1	٩	4	٢	1	1	1	1	L I	
)	1	Т	1	1	(1	1	+	+	1)	1	1	1	1	1	1	-	-	-	~	*	1	x	1	۲	1	t.	1	4		٢	3	1	1	1	1 1	L.
1	1	I.	1	1	Т	ſ.	1	+	+	1	1	1	1	٢	1	1	1	1	-	-	×	1	x	1	1	Т	Т	t.	I.	4	١	1	1	1	1	1	1	t
1	1	T.	1	1	Т	1	1	1	+	1	1	1	1	1	1	C	ſ	1	1	*	1	1	1	Т	1	1	1	1	1	۴	1	1	1	1	1	1	1	1
1	1	Т	1	1	Т	1	1	1	+	1	1	1	1	1	1	ι.	1	1	*	1	1	1	1	1	1	1	Т	1	1	+	1	1	1	1	1	1	1 1	I
1	1	T.	1	1	Т	ι	1	4	١	1	Т	1	1	t.	4	1	*	*	~	1	1	1	1	1	1	1	Т	٢.	ſ	+	1	1	1	1	1	1	1 1	ſ
1	Т	1	٦.	Т	ч	1	1	4	١	1	1	x	1	1	1	1	•	~	~	-	~	1	1	1	1	\$	1	ſ.	t	+	1	1	1	1	1	1	1 1	ſ
1	1	1	1	L.	-F	1	1	4	١	1	1	1	2	1	\$	1	`	~	-	-	1	1	1	1	1	1	1	1	1	+	1	1	1	1	1	1	1	ſ
1	1	1	1	x	1	1	1	4	١	1	1	5	1	1	1	~	~	-	-	-	-	1	1	1	1	1	1	1	1	+	٠.	Ł	1	1	1	1	()	1
4	1	1	5	×.	1	1	1	1	1	1	X	1	1	1	~	2	2	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.1	1
٩.	1	1	3	x	1)	1	1	1	1	1	`	`	1	~	2	\sim	-	-	-	-	~	-	1	1	1	1	1	1	1	1	1	1	1	1	1	11	1
1	1	1	1	1	1	1	1	1	*	1	1	1	~	~	~	*	~	-	-	-	-	1	-	-	1	1	1	1	1	*	1	1	1	1	1	1	1 1	1
1	X	£	1	X	5	-5		*	×	*	*	*	~	*	~	~	-	-	-	-	-	-	-	1	1	1	1	2	1	*	×	1	1	1	1	2	1-1	1
1	1	X	1	X	1	1	*	*	*	×	*	*	*	*	*	7	7	2	-	-	5	-	-	*	-	×	1	*	1	×	*	×	1	1	1	1	1 1	1
1	1	1	1	1	1	*	*	*	*	*		*	*	~	-	1	-	-	*	-	*	-	-	-	1	*	1	*	1	*	1	1	1	1	1	1	1.1	1
*	*	1	,	1	`	1	*	*	*	1	*	1	~	-	-	-	3	2	-	-	-	-	-	*	-	1	1	4	1	1	1	1	1	1	1	1	1 1	1
1	1	8	1	1	1	2	*	*	`	1	*	1	1		1		3	17	-	-	-	-	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1.1	1
1	~	1	1	1	1	*	*	~	•	1	~	~	2	~	~	~	~	-		-	-	1	-	-	1	1	-	2	1		1	1	1	1	1	1	1.1	1
2	1	1	1	1	~	1	2	-	*	2	~	~	~	~	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	*	1	1	1	1	1	1	11	1
2	2	1	2	>	1	*	2	*	*	1	*	*	2	~	-	1	(H)	100			-		-	-	-	1	*	1	î	n1	5b	6	nu	b	DE	1	1 0	3.1
1	1	1	1	1	1	~	~	~~	-	2	~	~	-	~	*	-	-	-	-	-	-	-	-	-	-	-	-	*	1	N	TF	in	P	1	/F	0	CI	TV
>	1	1	1	1	1	\sim	~	~	-	2	*	~	~	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1						0.2			•••
*	2	2	~	1	1	~	~	•	2	~	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	*	P.		ne		- 1	0.5.			
*	*	~	~	~	2	~	~	-	-	~	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	na		us		1	uu		K	"

Questions: MHD Jets

- Initial models: Spin rates and B-fields?
- 3D simulations?
- MRI?
- Dynamo?
- Whither Pulsars/Magnetars? Final spins and Bfields? Spindown?
- Hypernova / GRB connection?
- Secondary MHD Jets/low-energy explosion after other main explosion?

Neutrino Bursts/Signatures

Breakout Burst of Neutrinos: Precision Boltzmann Transfer

2D Electron Neutrino Fluxes for 1.92 solar mass AIC model:

Rapid Rotation!

Electron Neutrinospheres for 1.92 solar mass AIC model:

"R-process" Nucleosynthesis?

R-Process Nucleosynthesis

 $N \rightarrow$

Ejecta mass versus Entropy and Y_e for Acoustic Mechanism: R-process?

M (s > 300): $1.25 \times 10^{-4} M$?

M (s > 100): 1.07 x 10⁻⁵ M ?

Very Preliminary!!!

Preliminary R-process Calculations for the Long-term Acoustic Mechanism

Preliminary R-process Calculations for the Long-term Acoustic Mechanism

K. Otsuki et al. 2008

Preliminary R-process Calculations for the Long-term Acoustic Mechanism

Gravitational Radiation from Supernovae

Ott et al. (2004,2006)

Core-Collapse Supernovae: The Future

- Numerous Explosion Mechanisms identified: Neutrino-Wind, Neutrino/SASI, Acoustic/Core-oscillation, MHD Jet, Hybrids
- Symmetry-breaking, instabilities frequently the key to explosion: Simultaneous accretion and explosion
- Multi-D (2D and 3D) radiation hydrodynamics: 3D effects?
- Is there an important role for **Rotation**?
- Is there a role for Magnetic fields? Pulsar/Magnetar fields?
- **Viscosity**? viscous heating and angular momentum transport
- Equation of state?
- Neutrino physics, rates, neutrino oscillations?
- Systematics with progenitor: kicks, r-process, SN energy, BH of observables / diagnostics?
- **GRB/hypernova/SN** connections!

Extra Slides

Summary of Salient Features of Acoustic Mechanism

- All Explosions are Fundamentally Aspherical
- Core l=1 g-modes are excited by turbulence and funnel accretion, which persists
- Explosion driven by Acoustic power radiated by Core Oscillations and by neutrino heating (which dominates?)
- Sound pulses steepen into multiple, nested shock waves; r-process entropies possible?
- "Unipolar" / asymmetric-wind explosion: simultaneous explosion and accretion; symmetry breaking is fundamental
- Self-excitation of core oscillation; core is transducer, storage battery?
- Natural mechanism for pulsar proper motions, supernova polarizations, and observed debris morphologies?

A Boltzmann Formalism for Oscillating Neutrinos

P. Strack and A. Burrows Phys.Rev.D 71:093004,2005 (hep-ph/0504035) & hep-ph/0505056

Quasi-classical Boltzmann

equations

• Wigner density matrix, ensemble-averaging

$$\mathcal{F} = \langle n_i | \rho | n_j \rangle = \begin{pmatrix} f_{\nu_e} & f_{e\mu} \\ f_{e\mu}^* & f_{\nu_{\mu}} \end{pmatrix}$$

 → Diagonal elements: real numbers: Phase-Space densities Off-diagonal elements: complex numbers: Macroscopic Overlap densities $f_r = \frac{1}{2} \left(f_{e\mu} + f_{e\mu}^* \right)$ (Real part) $f_i = \frac{1}{2i} \left(f_{e\mu} - f_{e\mu}^* \right)$ (Imaginary part)

$$L = \frac{4\pi\hbar c\varepsilon}{\Delta m^2 c^4} \qquad \qquad A = \left(\frac{L}{\pi c}\right) \frac{2\sqrt{2}G_F}{\hbar} n_e(\mathbf{r})$$

$$\frac{\partial f_{\nu_e}}{\partial t} + \mathbf{v} \cdot \frac{\partial f_{\nu_e}}{\partial \mathbf{r}} + \dot{\mathbf{p}} \cdot \frac{\partial f_{\nu_e}}{\partial \mathbf{p}} = -\frac{2\pi c}{L} f_i \sin 2\theta + C_{\nu_e}$$

$$\frac{\partial f_{\nu_\mu}}{\partial t} + \mathbf{v} \cdot \frac{\partial f_{\nu_\mu}}{\partial \mathbf{r}} + \dot{\mathbf{p}} \cdot \frac{\partial f_{\nu_\mu}}{\partial \mathbf{p}} = \frac{2\pi c}{L} f_i \sin 2\theta + C_{\nu_\mu}$$

$$\frac{\partial f_r}{\partial t} + \mathbf{v} \cdot \frac{\partial f_r}{\partial \mathbf{r}} + \dot{\mathbf{p}} \cdot \frac{\partial f_r}{\partial \mathbf{p}} = -\frac{2\pi c}{L} f_i (\cos 2\theta - A)$$

$$\frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \frac{\partial f_i}{\partial \mathbf{r}} + \dot{\mathbf{p}} \cdot \frac{\partial f_i}{\partial \mathbf{p}} = \frac{2\pi c}{L} \left(\frac{f_{\nu_e} - f_{\nu_\mu}}{2} \sin 2\theta + f_r (\cos 2\theta - A)\right)$$

With and Without Burning

s		6		*	Ŀ,		5		4			e.			a,				a.	
v		5			ъ		۰.								\mathbf{v}				e	
s,		5													÷				ø	
v												4							e	
ş.																			÷	
v																				
÷																				
5																			÷	
ς.																				
4		÷			÷				-										y.	
							4		ά.	÷										
4																			÷	
					÷.		1													
					a.														-	
							х.												-	
a.							\mathbf{x}_{i}								4					
4							4		ъ.										į,	
							κ.												*	
a,		٠			÷		-		-						•					
							•												4	
a.		ж			÷							۰.			4				к.	
÷												٠							4	
															4				4	
4					P		٠					4			4				4	
à.					P		e					•							4	
					P		٠					٩	4	1				4		
		p			Ŧ		r					×.		M	15	81	U	*2# 4	TH	1
à.		2			8				٠			٩.		T	me		183	u 15 i	m 9	
•		٠			۴				٠			٩	F	ad	ius	-	50	0.0) k	m

Accretion-Induced Collapse of O-Ne-Mg White Dwarfs

Dessart, Burrows, Ott, Livne, Yoon, & Langer 2005 Rapid Rotation!

AIC: 1.92 solar masses:

AIC: 1.92 solar masses:

Iso-Energy/Ye coloring

0.50

Evolution of Core Kinetic Energy: 11 solar-mass Progenitor

25 Solar Mass Progenitor: Core Oscillation and Shock Evolution

Mach Number along axis versus Time

Preliminary R-process Calculations for the Long-term Acoustic Mechanism

Key Features of Acoustic Mechanism

- "A Tale of Two Instabilities"
- Shock Instability (SASI) after bounce (30-80 Hz)
- Rapid core oscillation progressively excited: l=1 g-mode (~300 Hz), first by turbulence (that grows with time), then non-linearly by anisotropic downflowing plumes/streams
- Core oscillation generates sound waves that propagate outward
- Acoustic power and momentum explode the star
- Hybrid acoustic/neutrino model?
- Self-excited oscillations (very non-linear); transducer
- All models explode, but "late" (0.5-1.0 seconds after bounce
- Fundamentally aspherical explosions: unipolar?
- R-process nucleosynthesis?
- Recoil: Natural mechanism for pulsar kicks?