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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.
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What’s wrong with K-way classification?

Detecting and localizing people performing actions is challenging



What’s wrong with K-way classification?

Ignores the complexity of the ways in which people + objects can interact
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.

Our goal: detailed action understanding
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.

1. Localize person (+ interacting object)

Our goal: detailed action understanding
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
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1. Localize person (+ interacting object)
2. Classify action of each detected instance

Our goal: detailed action understanding

Riding
Bike
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.

1. Localize person (+ interacting object)

3. Estimate pose of person (+ interacting object)
2. Classify action of each detected instance

Our goal: detailed action understanding

Riding
Bike



Challenge 1: human pose estimation

variation in pose, viewpointvariation in appearance



Challenge 2: person-object occlusions

Occluded 
person leg



2 Chaitanya Desai and Deva Ramanan

Fig. 1. Our model detects multiple people-objects, action class labels, human and

object pose, and occlusion flag. The above result was obtained without any manual

annotation of human bounding boxes at test-time. White edges connect human body

parts. Light-blue edges connect object parts to each other and to the human. We define

a single compositional model for each action class (in this case, RidingHorse) that is

able to capture large changes in articulation, viewpoint and occlusions. We denote

occluded parts by an open circle. For example, our model correctly predicts that a

different leg of each rider is occluded behind his horse.

Articulated skeletons have dominated contemporary approaches for hu-

man pose estimation, popularized through 2D pictorial structure models that

allow for efficient inference given tree-structured spatial relations [1]. We specif-

ically follow the flexible mixtures of parts (FMP) framework of [2], which aug-

ments a standard pictorial structure with local part mixtures. While such meth-

ods are flexible enough to capture large variations in appearance due to pose,

they still fail to accurately capture self-occlusions of limbs and occlusions due to

interacting objects.

Visual phrases implicitly model occlusions and interactions through the use

of a “composite” template that spans both a person and an interacting object [3].

Traditional approaches use separate templates for a person and object; in such

cases, it may be difficult to model geometric and appearance constraints that

arise from their interaction, such as the characteristic pose of a person riding a

horse, or the fact that the legs of such a person maybe occluded. A single, global

composite addresses this issue, but one may need a large number of composites

to capture all such person-horse interactions.

Poselets partially address the exponential growth of composite templates

by learning visual composites at the local part level [4]. Rather then learning

separate templates for the arm and torso, one can learn a torso-arm composite

that implicitly captures their interaction and occlusions. By composing together

different poselets, one can generate a large number of global composites. While

such models are successful at detection, it is not clear if they can be used for

detailed spatial reasoning, such as pose estimation. One reason for this is that

such methods lack a relational model that forces an anatomically-consistent ar-

rangement of poselets to fire in a given detection.

Our approach combines the strengths of all three approaches. We break up

global person+object composites into local patches or “phraselets,” which can

(Revised) action understanding

Occluded leg

1. Localize
2. Estimate pose 
3. Classify action
4. Estimate occlusions



Related work: PASCAL Action 
Classification Challenge

Everingham et al 2011
Yao et al ICCV 11
Maji et al CVPR11

Few previous entries appear to output an explicit human skeleton

Exceptions: next talk, Yang et al CVPR 10



Our approach

Articulated pose 
estimation

Visual 
composites

Geometric parts



Articulated pose estimation
Pictorial structures

Yang & Ramanan 11Ioffe & Forsyth 01
Felzenswalb & Huttenlocher 05

Ferrari et al.08 
Andruikula et al. 09

Johnson & Everingham 11



Articulated pose estimation
Pictorial structures

Models assume local appearance of parts is independent of global geometry
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.



Articulated pose estimation
Pictorial structures

Models assume local appearance of parts is independent of global geometry
Problem: This fails to capture occlusions
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.



Visual Phrases

Person on horse

Sadeghi and Fahardi, CVPR 11

Occluded leg not 
present in template



Visual Phrases

Person on horse
Person on 

jumping horse
Person standing 

next to horse

Problem: one may need lots of large composite templates 

Sadeghi and Fahardi, CVPR 11



Bourdev & Malik ICCV09
Maji et al CVPR11

Geometric parts (poselets)



Problem: difficult to ensure that a globally-consistent 
arrangement of poselets will fire on a detection

Bourdev & Malik ICCV09
Maji et al CVPR11

Geometric parts (poselets)



Approach

Articulated pose 
estimation

Visual 
composites

Geometric parts



Articulated models + visual composites                      

1. Define articulated model for person+object compositeDetecting Actions, Poses, and Objects with Relational Phraselets 7

(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
�
dx dy dx2 dy2

�T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.
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labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.



Articulated models + visual composites + geometric parts

1. Define articulated model for person+object composite
2. Use local part mixtures (“phraselets”) to capture different occlusion states
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This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−6

−4

−2

0

2

4

6

x

y

Left knee wrt hip Left foot wrt knee Left hand wrt elbowNeck wrt Head Left elbow wrt shoulder

Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−6

−4

−2

0

2

4

6

x

y

Left knee wrt hip Left foot wrt knee Left hand wrt elbowNeck wrt Head Left elbow wrt shoulder

Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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learned from training data.
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SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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(a) Visible elbow phraselets (b) Occluded elbow phraselets

Fig. 3. We show left-elbow phraselets learned from the Running action class in PAS-

CAL VOC 2011. Our occluded clusters capture changes in the appearance of elbows

resulting arising from viewpoint and occlusion.

that global changes in configuration of the human body and nearby object will
produce local changes in appearance of a part i, and hence should be captured
by ti. For example, the local appearance of the hand will be affected by the
orientation and type of bicycle (e.g., different bicycles can have different types
of handlebars). We construct a feature vector associated with each part in each
image, and cluster these vectors to derive mixture labels. To make the clustering
scale invariant, we estimate a scale for each part in each image

sin = scalei ∗ headlengthn

where scalei is the canonical scale of a part measured in human headlengths,
and headlenthn is the length of the head in image n. For example, we use scalei
= 1 for body parts and scalei = 2 for bicycle wheels. We now write the feature
vector for part i in image n as:

Ψ(xi
n) =

�
Dist Visible

�T
(1)

where Dist = {wjdij}, Visible = {wjo
j
n}, for j = 1..K

and wj = e−Ti||dij ||2 , dij =
(pjn − pin)

sin

Dist is a vector of weighted relative part distances, normalized for the scale of
part i in image n. Distances and the visibility flags are guassian-weighted so that
closer parts have a larger influence in the global descriptor. We found it useful
to vary the variance of the gaussian (given by Ti) across each part, but use a
fixed set across all activities. For a given part i, we run K means on all such
features extracted from a training set of images.

Occlusion: Many parts are not visible in certain images. Such part instances
may pollute a cluster if both visible and occluded parts are clustered together.
Because we believe that occlusions will generate large changes in appearance,
we simply separate Ψ(xi

n) vectors into two sets, where part i is occluded or not,
and separately run K means for each set. We generate K = 6 visible clusters
and K = 4 occluded clusters for each part. We show examples of visible clusters
in Fig.2. In Fig.3, we compare visible and occluded clusters for the left elbow
across images of people Running. More examples of the output of our clustering
algorithm are shown in the supplementary material.
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(a) Visible elbow phraselets (b) Occluded elbow phraselets

Fig. 3. We show left-elbow phraselets learned from the Running action class in PAS-

CAL VOC 2011. Our occluded clusters capture changes in the appearance of elbows

resulting arising from viewpoint and occlusion.

that global changes in configuration of the human body and nearby object will
produce local changes in appearance of a part i, and hence should be captured
by ti. For example, the local appearance of the hand will be affected by the
orientation and type of bicycle (e.g., different bicycles can have different types
of handlebars). We construct a feature vector associated with each part in each
image, and cluster these vectors to derive mixture labels. To make the clustering
scale invariant, we estimate a scale for each part in each image

sin = scalei ∗ headlengthn

where scalei is the canonical scale of a part measured in human headlengths,
and headlenthn is the length of the head in image n. For example, we use scalei
= 1 for body parts and scalei = 2 for bicycle wheels. We now write the feature
vector for part i in image n as:

Ψ(xi
n) =

�
Dist Visible

�T
(1)

where Dist = {wjdij}, Visible = {wjo
j
n}, for j = 1..K

and wj = e−Ti||dij ||2 , dij =
(pjn − pin)

sin

Dist is a vector of weighted relative part distances, normalized for the scale of
part i in image n. Distances and the visibility flags are guassian-weighted so that
closer parts have a larger influence in the global descriptor. We found it useful
to vary the variance of the gaussian (given by Ti) across each part, but use a
fixed set across all activities. For a given part i, we run K means on all such
features extracted from a training set of images.

Occlusion: Many parts are not visible in certain images. Such part instances
may pollute a cluster if both visible and occluded parts are clustered together.
Because we believe that occlusions will generate large changes in appearance,
we simply separate Ψ(xi

n) vectors into two sets, where part i is occluded or not,
and separately run K means for each set. We generate K = 6 visible clusters
and K = 4 occluded clusters for each part. We show examples of visible clusters
in Fig.2. In Fig.3, we compare visible and occluded clusters for the left elbow
across images of people Running. More examples of the output of our clustering
algorithm are shown in the supplementary material.
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is

visible occluded

x:image
p: position of part
t: local mixture type of part

S(x, p, t) =
�

i

wti
i · φ(x, pi) +

�

ij∈E

w
ti,tj
ij · ψ(pi, pj)
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(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
�
dx dy dx2 dy2

�T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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separate models, but we emphasize that our representation allows for the composition of any part type with any other part
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learned from training data.
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SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
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type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.



Local mixtures of phraselets
135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#866

ECCV
#866

4 ECCV-12 submission ID 866

Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#866

ECCV
#866

4 ECCV-12 submission ID 866

Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is

visible occluded

x:image
p:position of part
t: local mixture type of part

S(x, p, t) =
�

i

wti
i · φ(x, pi) +

�

ij∈E

w
ti,tj
ij · ψ(pi, pj)
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(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
�
dx dy dx2 dy2

�T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
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type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is
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Fig. 2. We show bike handles from PASCAL 2011 “riding bike” action clustered using

global configurations of pose and objects. Bike handles belonging to the same cluster are

all assigned the same mixture label ti as described in section 2. Our clusters naturally

encode changes in viewpoint, as well as different semantic object types; for example,

the bottom-center and bottom-right clusters encode similar viewpoints, but different
bicycle types (road bikes versus motorbikes). This is because each type induces different
human poses, captured by our clustering algorithm.

single instance of a person-object in the image. Our work differs in that we

reason about multiple person-objects and detailed part occlusions of both the

object and person. The latter allows us to better reason about occlusions arising

from interactions. Visual phrases [5] takes a “brute-force” approach to model-

ing occlusions and pose interactions by defining a global template encompassing

both the person and object. This approach may require a separate template for

each combination of constituent objects and articulated pose. We instead use

local mixtures and co-occurrence relations to reason about such interactions.

2 Phraselet clustering

We describe our approach for learning phraselets, or mixtures of local patches,

specific to a given activity such as bike riding. We assume we are given images

from an activity with keypoint labels spanning both the human body and any

interacting objects. Typical keypoint labels may include head, lt shoulder, rt
elbow, lt ankle, etc for the central figure and front wheel, rear wheel, bike handle
for the bike. More details on the parts we collect keypoint locations for are given

in Sec. 5. We assume these keypoint labels are with a visibility flag denoting if

a particular keypoint is occluded or not.

Let i ∈ {1, 2, . . .K} be the one of the K parts of the person and/or the

object specific to an activity. Let us write pin = (x, y) and oin ∈ {0, 1} for the

pixel position and visibility flag of the ith part in training image n, respectively.
We write tin ∈ {1, 2, . . .M} for a mixture or phraselet label. For the remainder of

this section, we describe a method for obtaining mixture labels. Our intuition is

visible occluded

x:image
p:position of part
t: local mixture type of part

S(x, p, t) =
�

i

wti
i · φ(x, pi) +

�

ij∈E

w
ti,tj
ij · ψ(pi, pj)

“Switching” spring model tuned 
for a pair of local mixtures

Yang & Ramanan CVPR 11
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(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
�
dx dy dx2 dy2

�T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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learned from training data.
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JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
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Fig. 1. Our model detects multiple people-object interactions, action class labels, hu-

man and object pose, and occlusion flag. The above result on a test image was obtained

without any manual annotation of human bounding boxes. White edges connect human

body parts. Light-blue edges connect object parts to each other and to the human. We

define a single compositional model for each action class (in this case, horseriding) that

is able to capture large changes in articulation, viewpoint and occlusions. We denote

occluded parts by an open circle. For example, our model correctly predicts that a

different leg of each rider is occluded behind his horse.

Articulated skeletons are the classic representation for capturing human

body pose, dating back to the generalized cylinders of Marr and Binford [1,

2]. Such representations have dominated contemporary approaches for human

pose estimation, popularized through 2D pictorial structure models that allow

for efficient inference given tree-structured spatial relations [3]. We specifically

follow the flexible mixtures of parts (FMP) framework of [4], which augments

a standard pictorial structure with local part mixtures. While such methods

are flexible enough to capture large variations in appearance due to pose, they

still fail to accurately capture self-occlusions of limbs and occlusions due to

interacting objects.

Visual phrases implicitly model occlusions and interactions through the use

of a “composite” template that spans both a person and an interacting object [5].

Traditional approaches use separate templates for a person and object; here, it

may be difficult to model geometric and appearance constraints that arise from

their interaction, such as the characteristic pose of a person riding a horse, or the

fact that the legs of such a person maybe occluded. A single, global composite

addresses this issue, but one may need a large number of composites to capture

all such person-horse interactions.

Poselets partially address the exponential growth of composite templates

by learning visual composites at the local part level [6]. Rather then learning

separate templates for the arm and torso, one can learn a torso-arm composite

that implicitly captures their interaction and occlusions. By composing together

different poselets, one can generate a large number of global composites. While

such models are successful at detection, it is not clear if they can be used for

detailed spatial reasoning, such as pose estimation. One reason for this is that

such methods lack a relational model that forces an anatomically-consistent ar-

rangement of poselets to fire in a given detection.

Part appearance (local mixture, denoted by color) 
depends on the location and appearance of other parts

Geometry-dependent parts
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Fig. 1. Our model detects multiple people-object interactions, action class labels, hu-

man and object pose, and occlusion flag. The above result on a test image was obtained

without any manual annotation of human bounding boxes. White edges connect human

body parts. Light-blue edges connect object parts to each other and to the human. We

define a single compositional model for each action class (in this case, horseriding) that

is able to capture large changes in articulation, viewpoint and occlusions. We denote

occluded parts by an open circle. For example, our model correctly predicts that a

different leg of each rider is occluded behind his horse.

Articulated skeletons are the classic representation for capturing human

body pose, dating back to the generalized cylinders of Marr and Binford [1,

2]. Such representations have dominated contemporary approaches for human

pose estimation, popularized through 2D pictorial structure models that allow

for efficient inference given tree-structured spatial relations [3]. We specifically

follow the flexible mixtures of parts (FMP) framework of [4], which augments

a standard pictorial structure with local part mixtures. While such methods

are flexible enough to capture large variations in appearance due to pose, they

still fail to accurately capture self-occlusions of limbs and occlusions due to

interacting objects.

Visual phrases implicitly model occlusions and interactions through the use

of a “composite” template that spans both a person and an interacting object [5].

Traditional approaches use separate templates for a person and object; here, it

may be difficult to model geometric and appearance constraints that arise from

their interaction, such as the characteristic pose of a person riding a horse, or the

fact that the legs of such a person maybe occluded. A single, global composite

addresses this issue, but one may need a large number of composites to capture

all such person-horse interactions.

Poselets partially address the exponential growth of composite templates

by learning visual composites at the local part level [6]. Rather then learning

separate templates for the arm and torso, one can learn a torso-arm composite

that implicitly captures their interaction and occlusions. By composing together

different poselets, one can generate a large number of global composites. While

such models are successful at detection, it is not clear if they can be used for

detailed spatial reasoning, such as pose estimation. One reason for this is that

such methods lack a relational model that forces an anatomically-consistent ar-

rangement of poselets to fire in a given detection.

occluded
 mixture

Inference: Infer part locations + mixtures with dynamic programming on trees

Learning: Tune linear parameters (including occlusion constraints) with SVM solver



Possible Criticisms

1.  One should not score image evidence during occlusions
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−6

−4

−2

0

2

4

6

x

y

Left knee wrt hip Left foot wrt knee Left hand wrt elbowNeck wrt Head Left elbow wrt shoulder

Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

2.  Small patches are not as discriminative as larger templates 
  (visual phrases / poselets)

Detecting Actions, Poses, and Objects with Relational Phraselets 7

(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
�
dx dy dx2 dy2

�T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.
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to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.
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2.  Small patches are not as discriminative as larger templates 
  (visual phrases / poselets)
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(a) Running (b) RidingBike (c) Walking (d) Phoning

(e) RidingHorse (f) UsingComp. (g) TakingPhoto (h) Jumping

Fig. 4. Visualizations of our learned models and tree-structured relations. Our activity-
specific tree connects part templates spanning both, the human and the object. Red
edges connect parts of the human to each other. Green edges connect parts of an
object to each other and to the human. Note that we are showing one (out of an
exponential number of) combinations of local templates for each activity. For example,
the selected phraselet mixtures in (e) correspond to a left-facing horse, but the same
model generates other views by swapping out different mixtures at different spatial
locations (as shown in Fig. 1).

This term might encode, for example, that curved handlebars tend to co-occur
with road bicycles, while flat handlers tend to co-occur with motorbikes. Given
that φ(I, pi) is a feature vector (e.g., HOG [17]) extracted from pixel location
pi, the first sum from (3) computes the score of placing template αi

ti , tuned for
mixture ti for part i, at location pi.

Spatial relations: We write ψ(pi − pj) =
�
dx dy dx2 dy2

�T
for a quadratic

deformation vector computed from the relative offset of locations pi and pj . We
can interpret βij

ti,tj as a quadratic spring model that switches between a collection

of springs tailored for a particular pair of mixtures (ti, tj). Because the spring
depends on the mixture components, spatial constraints are dependent on local
appearance. For example, this dependency encodes the constraint that people
may be posed differently for different types of bikes. Mixture-specific springs also
encode self-occlusion constraints arising from viewpoint changes. For instance,
our model can capture the fact that the right hip of a person is more likely to be
occluded when it lies near a visible left hip, because such an spatial arrangement
and mixture assignment is consistent with a right-facing person.

4 Inference and Learning

Inference corresponds to maximizing (3) with respect to p and t. When the
relational graph is a tree, one can do this efficiently with dynamic programming,
as described in [1, 2]. We omit the equations for a lack of space, but emphasize
that our inference procedure returns back both part locations and part mixture
labels. While the inferred mixture labels in [2] are ignored, we use them to infer
occlusion flags for each part.

Any connected set of phraselets can learn to 
behave like a larger template (rigid springs)



Experimental Results

We use 2010 & 2011 PASCAL Action Recognition benchmark

We augment training and validation set with landmark annotations



High-confidence detections
Riding horse

Riding bike
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.
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High-scoring false-positives

Often produce meaningful poses
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Fig. 6. We show 2 of the top false positives for a few actions. We plot ground-truth (red

boxes) and predictions (blue boxes) corresponding to the action label in each row. Many

mistakes are due to imprecise bounding-box localization (RidingHorse) or confusion of

action classes with similar poses (the left Phoning image). The latter is denoted by the

lack of a red box. Finally, most but not all people have been annotated in the PASCAL

Action dataset. This causes some of our correct detections to be counted as false (e.g.,

the left Walking image). [Deva: Didn’t we fix this? If so, we should point this out and

release the data!].

manually annotated both the train and val set with part locations and occlusion
flags.

5.1 Action detection

For this task, our goal is to detect person-object composites in a test image. We
use our models to produce composite candidates by running them as scanning-
window detectors (without any manual annotation at test time), and applying
NMS to generate a sparse set of non-overlapping detections. We visualize high
scoring correct detections in Fig. 5 and false positives in Fig. 6. Ground truth
person-object composites are obtained by considering a tight box around parts
spanning the person and the object. To compare against groundtruth, we regress
a rectangle using the part locations of the person and the object for each person-
object detection.

We quantitatively evaluate our models using PASCAL’s standard criteria of
average precision (AP). We compare our models against a visual phrase (VP)
baseline [3], trained for each action class. For those action classes without ob-
jects, this is equivalent to a standard DPM [6]. In both cases, we use defaults of 4
global mixtures and 6 parts per mixture. From Fig. 7, we see that our model out-
performs these state-of-the-art baselines by a significant margin for most classes.
The improvement is more modest for some classes (Running,RidingBike), per-
haps because they exhibit less pose variation and so are well modeled by the
global mixtures of the DPM.

False-positive “phoning” detections

(taking a picture and scratching head have similar poses)
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Action detection

Blue line: Visual Phrase

Treat each action as an “object” and evaluate standard criteria (AP)

Red line: Us
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Fig. 7. Detection results on 2011 PASCAL-val set. Our model significantly outperforms

a state-of-the-art visual phrase (VP) baseline [3].

5.2 Action classification

We compare our model against 2 other baselines apart from (VP/DPM): (1)

FMP, the flexible articulated model of [2] applied to the joint person-object

composite. (2) FMP+occ, which is obtained as follows: The FMP model es-

timates local mixtures by clustering the relative position of a part i wrt its

parent j. FMP+occ also does this, but partitions the set of training data into

visible/occluded instances of part i, and separately clusters each. This allows

the FMP model to report visibility states using estimated part mixtures, anal-

ogous to our own model. To allow comparison to past work, we evaluate results

following the protocol of PASCAL, assuming human bounding-boxes are given

at test-time. We score each bounding box with the highest-scoring overlapping

pose of each action model. For the (VP) baseline, we also give it access to a

bounding box around the person-object composite. We present results on the

2011-val in Table 1. Our model outperforms state-of-the-art baselines, includ-

ing DPM/VP on 7/8 actions. We also report numbers on 2010 test data using

PASCAL’s evaluation server, shown in Table 2 and compare to reported perfor-

mance of [13]. Our numbers are comparable, even though [13] is trained using

a large external dataset and includes additional post-processing steps (such as

contextual re-scoring). Other state-of-the-art methods for action classification

exist, but some may make intimate use of the annotated human bounding box

on the test-image (say, to define a coordinate system to extract spatial features).

We advocate action detection as a more realistic evaluation.

5.3 Person-object pose estimation

Qualitative results of our pose-estimation are shown in Fig 5. In general, our

model rather accurately estimates parts of both the person and the object. No-

tably, our model also returns occlusion labels for each part (given by its estimated

Significantly outperform state-of-art for detection



A look back
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Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.

Action understanding
(detection, classification, & pose estimation)



A look back

Detecting Actions, Poses, and Objects with Relational Phraselets 9

R
u
n
n
in
g

R
id
in
gB

ik
e

R
id
in
gH

or
se

U
si
n
gC

om
p
u
te
r

P
h
on

in
g

T
ak

in
gP

h
ot
o

W
al
k
in
g

Fig. 5. We show detection results obtained without any manual annotation of test
images. We follow the notational conventions of Fig. 1, including open circles to denote
occluded parts. Each row shows the N best detections for a single action model (denoted
by the row’s label). Our compositional models are able to capture large changes in
viewpoint and articulation that are present even within a single action class.

Geometric part models
(interdependence of geometry and appearance)
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