Detecting Actions, Poses, and

Objects wi

Chaitanya D

Detecting Actions, Poses, and Objects with Relational Phraselets

Chaitanya Desai <u>UC Irvine</u>

Deva Ramanan

K-way action classification

walking riding-bike jumping phoning taking-picture using computer

K-way action classification

Requires bounding-box annotation on test images

What's wrong with K-way classification?

Detecting and localizing people performing actions is challenging

What's wrong with K-way classification?

Ignores the complexity of the ways in which people + objects can interact

Localize person (+ interacting object)

Localize person (+ interacting object)

Localize person (+ interacting object)
Classify action of each detected instance
Estimate pose of person (+ interacting object)

Challenge 1: human pose estimation

variation in appearance

variation in pose, viewpoint

Challenge 2: person-object occlusions

Occluded person leg

(Revised) action understanding

Localize
Estimate pose
Classify action
Estimate occlusions

Related work: PASCAL Action Classification Challenge

Everingham et al 2011 Yao et al ICCV 11 Maji et al CVPR11

Few previous entries appear to output an explicit human skeleton Exceptions: next talk, Yang et al CVPR 10

Our approach

Articulated pose estimation

Visual composites

Geometric parts

Articulated pose estimation

Pictorial structures

Yang & Ramanan 11

Ioffe & Forsyth 01 Felzenswalb & Huttenlocher 05 Ferrari et al.08 Andruikula et al. 09 Johnson & Everingham 11

Models assume local appeara

Models assume local appeara Problem: T

Visual Phrases

Sadeghi and Fahardi, CVPR 11

Occluded leg not present in template

Person on horse

Visual Phrases

Sadeghi and Fahardi, CVPR 11

Person on jumping horse

Person on horse

Person standing next to horse

Problem: one may need lots of large composite templates

Geometric parts (poselets)

Bourdev & Malik ICCV09 Maji et al CVPR11

Geometric parts (poselets)

Bourdev & Malik ICCV09 Maji et al CVPR11

Problem: difficult to ensure that a globally-consistent arrangement of poselets will fire on a detection

Approach

Articulated pose estimation

Visual composites

Geometric parts

Articulated models + visual composites

1. Define articulated model for person+object composite

Articulated models + visual composites + geometric parts

1. Define articulated model for person+object composite

2. Use local part mixtures ("phraselets") to capture different occlusion states

Learning phraselets

Define phraselets as commonly-occuring geometric configurations

"Poselet-like" clusters

Given training data (with annotated landmarks), find clusters of landmark configurations relative to each joint

Clusters

Model occlusions with separate clusters

Visible left elbow

Occluded left elbow

Mixture label corresponds to visible/occlusion state

Local mixtures of phraselets

Local mixtures of phraselets

Local mixtures of phraselets

Geometry-dependent parts

Part appearance (local mixture, denoted by color) depends on the location and appearance of other parts

Inference & Learning

Inference: Infer part locations + mixtures with dynamic programming on trees

Learning: Tune linear parameters (including occlusion constraints) with SVM solver

An occluded mixture template may learn all 0 weights; let the learning algorithm decide!

An occluded mixture template may learn all 0 weights; let the learning algorithm decide!

2. Small patches are not as discriminative as larger templates (visual phrases / poselets)

An occluded mixture template may learn all 0 weights; let the learning algorithm decide!

2. Small patches are not as discriminative as larger templates (visual phrases / poselets)

Any connected set of phraselets can behave like a larger template (rigid s

Experimental Results

We use 2010 & 2011 PASCAL Action Recognition benchmark We augment training and validation set with landmark annotations

Often produce meaningful poses

False-positive "phoning" detections

(taking a picture and scratching head have similar poses)

Articulated pose estimation

Action detection/ localization

Action classification

Articulated pose estimation

Action detection/ localization

Action classification

On par with Poselets, comparable to state-of-the-art

Articulated pose estimation

Considerably outperform pictorial structures

Action detection/ localization

Action classification

On par with Poselets, comparable to state-of-the-art

Articulated pose estimation

Considerably outperform pictorial structures

Action detection/ localization

Action classification

On par with Poselets, comparable to state-of-the-art

Action detection

Treat each action as an "object" and evaluate standard criteria (AP)

Significantly outperform state-of-art for detection

Action understanding

(detection, classification, & pose estimation)

A look

Action understanding (detection, classification, & pose estimation)

Geometric part models

(interdependence of geometry and appearance)

Riding Horse

