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The biological effects of ionizing
radiation

First lecture

= - lonizing radiations and radiations units

= - Exposure to natural background radiation
= - Exposures by medical usage of radiation

= - Biological effects (cellular damage, genomic instability, bystander effects and adaptive response,
dose response as function of radiation quality, dose fractionation and dose rates effects).

Second lecture

= - Biological effects (some particular effects, tissue reactions: skin, intestine, blood, testis, ovary, fetus.
Hereditary effects. Lethal doses. Stochastic effects)

= - Health effects of ionizing radiations on short and long terms, from high and low doses
(Hiroshima and Nagasaki).

Third lecture

= - Health effects of ionizing radiations on short and long terms, from high and low doses (Chernobyl,
radiologists, radon exposures, nuclear workers.)

= - Risk estimate from epidemiological data
= - Radiation limits and ICRP recommendation
= - Future research on radiation effects.
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These lectures will review data on the effects of
radiation with special emphasis on the health
effects from high and low doses exposures.

Radiation risks for long and short term effects as
assessed from Hiroshima and Nagasaki,
Chernobyl as well as others occupational
exposures will be also presented.

Latest ICRP recommendations will be discussed.
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A Physical Quantity

The absorbed dose in a point is defined as the
ratio of the mean energy imparted by ionizing
radiation to the matter in a volume element and
the mass of the matter in this volume element:

The unit of absorbed dose is the Gray:
1 Gy =1 J/Kkg
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Protection quantities

Mean absorbed dose in an organ or tissue:

Equivalent dose Iin an organ or tissue:

= D;R Is the absorbed dose averaged over the organ or
tissue T due to radiation R

= Wy IS the radiation weighting factor for radiation R
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Protection quantities

In order to take into account the not uniform
iIrradiation of the human body and the
different susceptibility to radiation of different
organs and tissues, the ICRP deflned the

concept of

= H; Is the equivalent dose in tissue or organ T
= W, IS the weighting factor for tissue T
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Natural sources of radiation )

Development of cosmic-ray air showers

Primary particle
(e.g. iron nucleus)

first interaction

=—— pion decays

pion-nucleus
interaction

second interaction

(radionuclides
present in the
earth’s crust, U,

Th, Ra, Rn ...) (radionuclides

P present in our

: body, mainly
4OK)

(C) 1999 K. BecnlShe

radioactive nuclides
(**C, "Be, 3H)
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Doses depend from latitudes and
altitudes

Total
=== Charged particles
=-==* Neutrons

A - High latitudes
B - Low latitudes
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Figure |. Absorbed dose rales In air 85 8 function of altilude
and geomagnetic latitude.

From UNSCEAR 1988
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World wide exposure from natural
sources
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Figure XV. Distribution of population of fifteen
countries with respect to total annual effective dose.

From UNSCEAR 2000 _ o _
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Average worldwide exposure to
natural sources

Annual gffective doze imiul

Sowree af exposure
Average Nypical range

Cozmie radiation
Dirsctly tonizing and photon component 028{(030)-
Meutron component 0.10 (0.08)

Cosmogenie radionuclhides 0.01 {0,013

Total cosmic and cosmogenic 035

External temrestiial radiation
Ontdoors 007 00.07
Indoars 041 {039

Total external terreshial radiation D48

Inhzlation exposure
Uranium and thormam sanes 0.006 (0.01)
Fadon (“Fn) 1.15(1.2)
Theren (FEn) 0.10(0.07)

Total inhalation exposure 126

Ingestion exponue
g 0.17¢0.1T
Uranivm and therium sernes 0.12 (0.06)

Total ingestion exposure 025

Total 24

Fesult of previous assessment [1I3] in parentheses.

Fangs fom sea level to high ground elevation.

Dependimz on radionnchde composihon of s01l and bulding matenals.
Depending on indoor accumoulation of raden zas.

Depany on radionuchde composihion of foods and dnnking water.
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Background radiation

low-LET: directly ionizing and

high-LET: neutron photon component of cosmic

component of cosmic _ radiation
radiation S 12%
4% N\ -

high-LET: - -
ingestion

5% \

low-LET: radiation exposure
from the earth

P ot

- 20%

low-LET: ingestion
7%

high-LET: inhalation
exposure due to radon
52%

Worldwide background radiation (From BEIR VI, 2006)
2.4 mSv/year
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=2
Natural and man made radiations

Nuclear
Fuel Cycle
Occupational 1%
2%

Consumer Products ‘ Medical X-rays
16% :

Nuclear Medicine

radiation
18%

(From BEIR VII, 2006)
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Counim)

Characieristics gf area

Approximare
population

Abzsorbed doze
rate in air ¢
{mGy k')

Brazl

(uarapari

WMmeas Gerais and Geoias
Porcos de Caldas Araxa

Idonazite sands; coastal areas

Voleanic intsrves

73000

350

S0- 170 (streets)
20- %0 000 (beaches)
110-1 300
340 average
2300 averaze

Tangjang
Quanzdonz

Iionazte particles

80 000

370 average

Nile delta

MMonamte sands

20-400

[E3]

Cantial region
Southwest

Granitic, sclustous, sandstone area
Ulrammimm punerals

T 000 000

20-400
10- 10 0400

[13]
[D10]

Eeralz and Madras

anges delta

MMonazite sands, coastal areas
200 ko long, 0.5 kmwide

100 D00

200-4001
1 300 average
260-440

[51%, 5207
[M13]

Tran (Tslanue
Eep. of)

Farnsar
Mzhallat

Spring waters

2000

T0-17 000
B00-4 000

[521]
[538]

Ialy

La=io
Campania
Cirineto towm
South Toscana

Voleanic sol

5100000
5600000
21000

100 Q00

180 average
200 average
560 average

150- 200

[C12]
[C12]
[C20]
[BI1]

Mine Island

Facific

Voleamie sol

4 500

1 100 maxmmm

(14]

Switzerland

Tessin, Alps, Jura

Goeiss, verucano, *Fa in karst soils

300 000

100- 200

[551]

a Inclodes cosmae and terrestrial radiation.
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From UNSCEAR 2000

. .y )
Areas of high natural radiation background jRCA
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Classes of HNBRs

VERY HIGH DOSE AREA
___Potential Effective Dose > 50 mSv/y

HIGH DOSE AREA

20 mSv/y < Potential Effective Dose <50 mSvl/y
MEDIUM DOSE AREA

5 mSv/y<Potential Effective Dose< 20 mSv/y;present ICRP
work limit

LOW DOSE AREA

Potential Effective Dose <5 mSv/y: two times natural
average global effective dose of UNSCEAR, or former
ICRP Public Dose Limit
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Summary of characteristics of
HNBRs in different countries

India Iran

359,619 Ramsar total
interviewed 60-70,000

76,942 homes Talesh Mahalleh

Brazil

Size of Pocos 6,000
population in 1,300

“radiation area”

measured 1,000
Source of Monazite sands, Monazite sands:  Hot springs:
exposures Volcanic Th-232, U-238 Th-232, ... Ra%4® and decay
extrusions Th- products

232, U-238

Reported dose distribution /year - mean (range)

e external 1.3 Pogos 2.1 (1-3) Out. 2.1 (0.5-76) 6 (0.6-135)
1.2-6.1 Araxa

Ins. 1.8 (0.5-54
A

e internal 4.3 (2.4-71)

Note: doses are expressed as effective dose, in mSv — India: medians, not mean; Brazil
internal+external
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Difficulties to assess risk
from HBNR studies

= Cofounders

= Ecological fallacy (BEIR VIl « Two populations
differ in many factors other than that being
evaluated, and one or more of these may be
underlying reason for any difference noted in their
morbidity or mortality experience (Lilienfeld and
Stolley 1994))

= High life time occurrence of cancers from all
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Professional exposures
Average Equivalent Dose (mSv)

= Air travel crew (250000 person) 3.02mSv /'y

« Nuclear workers 600000 (of which 407391

nuclear industry workers) overall average
cumulative dose

19.4 mSv

90% < 50 mSV, 0.1% =500 mSv

2 =29 Viay 2006
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Collective Personal Dose at CERN

=
o
o
o

(person-mSv)

—~
o
—
~
Q.
L
Q
2]
o
(o)
[
c
o
2]
—
&
o
[S)
&)

0
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

O Gamma/Beta B Neutron
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Personal Dose by
Professional Category at CERN
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Exposures from medical examinations.

Type of examinations Equivalent dose
mSv
Conventional X rays Chest (AP — Lat.) 0.02 - 0.04
Skull (AP — Lat.) 0.03 - 0.01
Lumbar spine (AP) 0.7
Mammogram (4 views) 0.7
Dental (Lat.) 0.02
Dental (Panoramic) 0.09
Abdomen 1.2
CT Head 2.0
Chest 8.0
Abdomen 10.0
Pelvis 10.0
Interventional Angioplasty (heart study) 7.5 -57.0
procedures Coronary angiogram 4.6 - 15.8

Intravenous: pyelogram
(kidney 6 films)
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Interaction
of
radiations
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Secondary electrons energy transfer .

- lonization of water molecules H,O", H,O*,e reacts rapidly with the
formation of highly reactive HO  and H' radicals and e

Water radiolisis produces very reactive radicals (HO- and H-)

- direct ionization of cellular macromolecules

: lonization (> 13 eV)
- excitation (> 7.4 eV)
= thermal transfer

Water molecules get in an excited state in a timescale of 10-1° seconds
many reactions occurs in the track of a charged particles and the chemical
development of the track is over by 106 sec.

The reaction radii is a measure of the reactivity of the created chemical
species and is 2.4 A for OH to 0.3 A for H;0
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Are different particles
producing different species?
= Electrons, protons and alpha particles

produces the same chemical species but
different spatial patterns of energy deposition
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Damage occurs in clusters

= Main tracks, secondary electrons and secondary reactive
radical species form clusters of chemical alterations giving
rise to DNA single strand breaks (SSB) and DNA double
strand breaks (DSB). The frequency and the complexity of
the clustered damage depends upon the linear energy
transfer (LET™) of the radiation.

*LET= Mean energy lost by charged particles in electronic collisions per unit track length.
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Direct action, Indirect actions and
Oxygen effect

= Energy might also be deposited directly in the
biological molecule, this will produce radicals in
the molecule itself and these radicals can reacts
producing damage.

= For High LET particles direct actions is the
predominant mechanism for radiation damage

= 60 to 70% of the damage from low LET radiation is
caused by HO- radicals.

= Damage get fixed by Oxygen (when oxygen reacts
with DNA, before repair has occurred, the damage
becomes unrepairable by chemical restitution
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Factors influencing the response
to radiation

— type of radiation [X, y, n, aj

— type of exposure
= internal [by inhalation or ingestion]
= external

— local or total body irradiation

— absorbed dose

— spatial distribution of the absorbed dose (track structure)
— time distribution of the absorbed dose

— intrinsic characteristics of the irradiated biological system:
radiation sensitivity (or resistance), number of cells exposed
to radiation, kinetics/metabolism, repair capability

— biological environment: oxygenation, nutrition, etc.
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A way to protect from injuries

= Cell cycle checkpoints

= Delaying the passage of cells through their
reproductive cycles, this gives time to repair
the damage

= Apoptotic death (reduces the frequency of
viable cells carrying mutations). This process
occurs at doses as low as a few mGy.
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The damage is repaired or gets fixed

= Biochemical pathways operate to recognize and signal the
presence of DNA damage

= Error-prone repair of chemically complex DNA double-
strand lesions leads to the induction of chromosome
aberrations, gene mutation, and later cell killing

= Direct DNA damage is observable within the first or second
post-irradiation cell cycles

= The frequency of genetic changes produced by irradiation
is higher than expected from direct DNA damage

= At very low doses < ten of mGy and dose-rates
intracellular signalling and repair systems are not activated
(threshold level)
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Damage to DNA

RADIATION DAMAGE TO DNA

H2-Bond Breakage — .-jﬁ'.—_-—-nouble-Strand Break

Pyrimidine Dimer -
., ., — Baseloss

DNA Cross-Linkage | : . " «—— Base Change From xxxxxx

Protein Cross-Linkage

Strand breaks in DNA may be initiated by low energy electrons
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DNA Double Strand Breaks activate
numerous proteins kynases

From BEIR VIl 2006

The increased p53 protein induce the transcription of p21, inhibit CDK2-cyclin E and
cause the arrest in G1
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MBAND FISH technique to assess .
Chromosomal Aberrations

Intrachromosomal aberration

in chromosome 2 from peripheral
lympocyte from an highly exposed
plutonium worker

From Mitchell C.R. et al. 2004

-

-
- =
-

In the FISH technique some or all chromosomes can be stained differently
so that any translocations that has occurred due to radiation can be detected.
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Common Exchange-Type
of Chromosome Aberrations

= \Within one chromosome:

Paracentric Inversion: Intra-chromosomal
(Intra-arm)

Incorrect ‘ Rejoining Incorrect * Rejoining

Interstitial Deletion: Intra-chromosomal
(Intra-arm)

Pericentric Inversion: Intra-chromosomal
(Inter-arm)

= Within 2 chromosomes:

Translocation: Inter-chromosomal
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http://www.columbia.edu/~djb3/aberrations.html

Chromosome damage visible whenis
cells divide

= Dicentrics, rings and
el EIE

= Micronuclel

2 =29 Viay 2006 VianienarStrei=Siancnl



Biochemicals pathways recognise and
signal DNA damage, and may lead to:

= Error-prone repair of complex DNA lesions
with the induction of mutation, chromosomal
aberrations and cell killing

= Error-free repair, this is restricted to the
later phases of the cell cycle

2 =29 Viay 2006
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From DNA — to cellular and
cancer development effects

1. P53 protein arrests the cell cycle and controls
apoptosis (programmed cell death) preventing
damaged cells to progress into a proliferation or
malighant state.

- Human tumours show deficiency in apoptotic
response.

- Specific DNA damage by radiation signal
apoptosis.

2. Activation of proto-oncogenes by chromosomal
translocation

3. Onset of genomic instability

4. Repair of DNA lesions may be
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Damage may get repaired

DSBs may be repaired by

a) non-homologous end-joining (NHEJ),
b) single strand annealing or

c) homologous recombination (HR).

 The ATM protein:

- control the rate at which cells grow and divide,

- assists cells in recognizing damaged or broken strands
of DNA and

- coordinates DNA repair by activating enzymes that fix
the broken strands.
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DNA Strand Breaks
\
Damage signal
> surveillance
mechanism

—
053.bcl2 + other \ /

regulatory molecules  Repair(XRCCH1, ligase 1

/ \ etc) recomblnatlon

Cell-cycle
checkpoints

Apoptosis

a
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Apoptosis in mice intestinal crypts
after 600 MeV neutrons irradiations

From Hendry J.H. et al.
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Figure 2. Incidence of apoptotic bodies in crypt sections at 3 hours after various doses of low
LET radiation. (), 1*7Cs y-rays at 450 cGy per min (Manchester). (¢), °°Co y-rays at
82 cGy per min (Manchester). (A\), °°Co y-rays at 0-53 cGy per min (Manchester). (V),
60Co y-rays at 0:53 cGy per min (CERN). ([]), °°Co y-rays at 0-27cGy per min
(Manchester). (), 300 kVp X-rays at 60 cGy per min (Manchester). The curve is based
on the exponential line in figure 3.
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Apoptosis in mice germ cells

(@
—
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Perturbation of the

= DNA damage response

= DNA repair and

= apototic process

IS linked with tumour genesis

2 =2t viay 2006
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Epigenetic effects of radiations

Post-irradiation cellular responses with genomic change
and/or cellular effect without directly induced DNA
damage

= They are of 2 types:

1) Radiation-induced genomic instability observable over
many post irradiations cell cycles (i.e. increased
frequencies of chromosome aberrations, mutations and
apoptosis/cell death). This instability is probably due to
persisting oxidative reactions products.

2) Post-irradiation bystander signaling between cells via
intercellular communication or from molecules through

4
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Bystander effects

= lIrradiated cells transmit damage
signals to non irradiated cells
resulting In

1. The production of DNA damage (i.e. DSB,
loss of nuclear DNA methylation etc.) and

2. The alterations in cell fate (i.e. apoptosis,
differentiation, senescence or proliferation)

= 90% of mutations in bystander cells after
low doses of a rays are point mutations,
whereas in DNA repair deficient cells

80% of the mutants show partial or total
gene deletions.
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Possible reasons for the effect

= |[nduction of oxidative stress

= Modulation of DNA damage-response
pathway

* Release of damaging factors from irradiated
cells

= Mobilization of intracellular calcium (culture
medium)

= |[ncrease in reactive oxygen species In
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Others non target effects

= Second neoplastic transformations
events with transmissible genetic
Instability Is dose dependent.

= Delayed reproductive failure many
generations after irradiations.

= Possible trans-generational effects of
radiations due to mductlon of genomic
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Cellular adaptive responses

= Exposure to a conditioning dose allows cells to
develop increased resistance to a second
radiation exposure.

= This effect is function
a) of the conditioning dose and
b) time for development and
c) of the cell system employed
= Varies very much between systems and is not an
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Adaptive response and bystander
effects from cell survival

% of cells expected
to survive when 10%
of cells are exposed

Exposure to 2 cGy
of y rays 6 hours
before irradiation
with a particles

of 10% of cell
population
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& a 10
Exact no. of alpha particles through nucleus

From Sawant et al. 2001 using C3H 10T1/2 cells in culture
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Adaptive response Iin V79 cells In
culture

No-Irradiation

0.1 Gy only The frequency of micronuclei
induced by 3 Gy of X-rays was
0.2 Gy only reduced, when 0.1 or 0.2 Gy of
pre-irradiation had been given 4
3 Gy only hours earlier. In HeLa cells (of

" cancer-origin) treated under the
0.1 CGy+3Gy same conditions the radiation
adaptive response was not
observed.

15 20 25 From Sakai K. 2000

0.2 Gy + 3 Gy

Micronuclei Frequency (%)
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Survival curves shapes

S= exp-(aD+pD2) _ D oxray
The ratio a/b is the dose at which the linear D partile
and quadratic components of cell killing are
equal and is a measure of the curvature

of the survival curve. a/b ratio is lower

for slowly proliferating cell populations.

The B component is modified by changing
in dose rate and reach 0 at very low

dose rates because of repair processes.

particle

Survival curves as well as mutational dose-response curves are linear + quadratic at low
LET and tend towards linearity at high LET.

= The of a given radiation is the reciprocal of the ratio of the absorbed dose of that
radiation to the absorbed dose of a reference radiation (usually x-rays) required to
produce the same degree of biological effect.
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Particles are characterized by thei.
LET

= Mean energy lost by charged particles in electronic
collisions per unit track length.

= X-rays and gamma rays or light charged particles such as
electrons that produce sparse ionizing events far apart at a
molecular scale (L < 10 keV/um).

= Neutrons, heavy charged partlcles that produce |on|zmg
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LET of protons and electrons in
water

—
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protons

\ electrons
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From ICRU 1970
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Nucleus
of 8 ym diameter

27 th=29thNViay 2008

Lowe-Let tracks ——
in cedl nu;l £us /r’"
for example,

From :|=11'|1'|.1r.155 :"

\7L<”}ﬁ?

Adose of 1 Gy
corresponds to
about 1000 tracks

From BEIR VII 2006
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Structure of protons and carbon
tracks in matter

Protonen Kohlenstoffionen
in HO

Dose distributions as a function
of the radial distance from the ion path.
For protons the energy loss

is small and the events are

far from each other.

For carbon ions high local
lonization densities are
reached in the center of

each single track when

particle energy loss reach

a value of 100 keV/um

or more.

By courtesy of
M. Kraemer, GSI
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The RBE depend on particles LET

X-ray
—B-266.4 MeV/u, 13.7keV/um
- 1.0 MeV/u, 1653.0keV/um

o
2
-
-
-
w

4 6 8
Dose (Gy)

Carbon ionsiirradiation of different: energies
(byrcourtesy olifkraiit G. andVeyrather W Ko G S])
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RBE versus LET

1 10 100
Linear energy transfer (keV/um)

1000
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Quality of dose distribution ———»

From. Fowler J. F.
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What happen when damage is not
recognised?

Xrs-5is a repair deficient mutant from CHO-K1 with defect in
one or two genes needed for damage recognition

] &= x-ray
-l | 2MeV/u - 2MeV/u
i 11.0MeY Au ke 11.0MeY /U

-¥- 266.4MeV./U -¥- 266.4Me¥ /U

=
IE
)
8
1]
e
T
)
£
=
>
[
=
1)

4 8

6
DoselGy)

from Weyrather W. K. et al. 1999
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Neutrons RBE varies with energy
and dose and may go >20 at low
doses,

Cvtogenetic studies, loman vmiphocytes i culhure
Call ransfommation

Cemetic endpomts in manmmalian svstems

Life shortemng {moose)

Tumeour induction

NCRP Report 1990 and UNSCEAR 2000

Data for cancer induction and life-shortening
are extrapolated to low doses and dose-rates
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Differences between high and low )
LET radiations

= the response of cells in the different phases
of the cell cycle depend on the radiations
quality (Miller R.C. et al. 1995)

= ras mutations in neutron radiation-induced
thymic lymphomas is different from that
seen in thymic lymphomas induced by
gamma radiation in the same strain of mice
Sloan S.R. et al. 1990
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Inactivation a-coefficients for cells In
culture irradiated during Mitosis, G1 and ™*

stationary phase as function of LET

Figure 3: Single-hit inactivation coefficients (a) for homogeneous populations of Chinese
cells irradiated in mitosis, G, phase and stationary phase, with 220 kV X rays
and various beams of charged particles. The a-coefficients are plotted as a function of the
median LET (in keV.um~!). After Chapman (1988).

hamster

From IAEA-TECDOC-992, 1997
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High LET and DNA damage

High LET radiations produce complex DNA damage
In the form of:

= Double Strand Breaks (DSB) and

= Non DSB Oxydative clustered DNA lesions
(Hada M. and Sutherland B.M. 2006 Hada M. and Georgakilas A.G. 2008 )

Complex chromosome exchanges with interaction
between more than 2 breakpoints are rare for low
doses of low LET radiations and significant for high
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Importance of track structure in
modulating DNA damage

RBE 1.3+0.2

y rays double strand breaks (DSB)
random induction

Protons at low doses show significant
deviation from randomness. Small
fragments (<23kbp) are produced via
non random processes and for protons
they represents about 20% of the total
number of fragments. For 3.3 MeV a
calculations estimates the small
fragments to be 50%.

i 1] 50 100 150 200

) (Gy)

From Campa A. et al. 2005
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Importance of the microscopic
structure of radiation tracks

The yields of DSB calculated
for protons and a increase
with LET.

Protons are more effective
than a of

the same LET.

From Campa A. et al. 2005

Gy '-Gbp')

10 100

i
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.:_-.'-l
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Also for cell inactivation
LET (keVium) protons are much more
efficient than a particles
of the same LET

From Goodhead D. et al.
1992
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Mutational dose-response

depends on:

= Biological system

= Mutational end-point
= LET

= Dose-rate

2 =2t viay 2006
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Dose-response relation for mutation”

= Mutational dose-responses are linear-
quadratic for low LET

= For high LET the dose-response tend
towards linearity

= RBEs of around 10-20 for LET in the range
of 70—200 keV uym

= The induction of blood chromosome
aberrations in human lymphocytes is linear
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Very large differences on radio-
sensitivity for different mouse strains

Comparison of survival curves
for clonogenic spermatogonia germ cells
From Bianchi et al. 1985
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Genetic susceptibilty to radiations
cataract induction in mice)

TaTH | ATM Helerozygels W 0.325 Gy Fe ions

Huimio- —
Tyguia

—

4 Gy of x-rays ATM Heterazygots

Vizsion impairing
cataract grads 2

i

Cataract Prevalence

Cataract grace: 2.5

0.0 T T T T T
u] -] L] 15 20 25 30 35

Time after irradiation (weeks)

a0 a0 4 50
Fig. 6. Prevalence of viion impainng cataracts {grade 15) as a

Time after irradiation [weeks) function of time after exposure to a dose of 32,5 oGy of high enegy Fo
. . . o ions in wild-type mice of in animak heterozyeows for the ATM gena,
Fig. 3. Prevaknoe of cataracts of gade 2 (vision impairing) as a Maote that at this dose, that corresponds to abowut o particle track per

fursction af time after exposum to 4 Gy of X-rays in wild-type mice and cell muckus, few wikd-type animals develop a vision impaiting
in animals bomorygous or beterozygous for the ATM gene. The cataracts, compared with 80% of the hetemzygotes.

heterozypows animals develop grade 2 (wision impainng) catamcts From Ha” et al 2005

about 10 weeks carlion than wild-type amimals, The wertical bars are
standard ermoms. (Redrawn from Worgul et al, 2002.) Ataxia TelangieCtaSia heterozygotes
may be a radiosensitive subpopulation
See also experiments on prostate cancer patients (Hall E.J. et al. 1999 and
experiments with mouse embryo cells in culture, Smilenov L.B. et al 2001

27 ih=29tnNviay 2008 Viarilena Streit-Bianchi




Male mice germ cells damage in
P53 knock-out mice

Genotype Stage X Py P53

(-/-) Do(cGy) 430140  230+40  440+90  610+190  0.06 -/- null
n c. 1.0 c. 1.0 c. 1.0 c. 1.0

D (cGy) 599 42 £ 19 200+ 24 <0.001

1.3+03 48+5. 12402 +/- heterozygotes

43+ 10 <0.001
6.8 £4.0 +/+ homozygotes

-
B6D2F| - 27+6 3 77410 pYoEl Conventional strain
c. 1A c. 1.0

p53 null mice spermatocytes and other progenitor cells are likely to carry mutations and,
as most will not die by apoptosis may contribute to a greater mutational burden
with respect to transgenerational effects (From Streit-Bianchi M. et al. 2007)
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Genetic susceptibility

= 5 genes have been identified so far in
humans to be responsible for increased
radiosensitivity. A screening for these genes
IS possible. Patients carrying these genes,

If undergoing radiotherapy, receive less
dose or receive alternative treatments.
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Effect of fractionation of doses in §&)
mouse

Skin (ocute) °

sublethal damage repair:

fast component (i.e. 0.4 h for lung)
and slow component (i.e. 4h for lung)
and

cellular proliferation

From
Thames H. et al.
1982
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DOSE/FRACTION (Gy)
The increase of total iso-effect dose as a function of decreasing dose per fraction
i.e. increasing number of fractions for various normal-tissue reactions.
The late reactions show a steeper variation than the early reactions
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Effect of fractionaction assessed >
by cell survival

. 6x200 RADS
= 1-5x 1072 SURVIVING

10x 200 RADS
9x 10-4

1200 RADS SINGLE
2.2x10°4
SURVIVING 90x

5x400 RADS
- 10-5
L SURVIVING

SURVIVING FRACTION

200 400 600 800 1000 1400
DOSE, RAD

From Duncan W., Nias A.HW., 1977
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Effect of fractionaction in pig skin

Fractionation Total dose
Gy
1 fraction 20
5 fractions in 4 days 36
5 fractions in 28 days 42

Doses required to produce the same skin reaction in pigs
From Duncan W., Nias A.H.W., 1977

2 =29 Viay 2006

Viariiena Strelt=-Biancnl



Hypersensitivity by fractionation at
low doses

Takle 1. Surviving fraction (platmz efficiency) for cells
aradizted to & Gy with different numbers of well-separated
fractions

(C3H 10TY: C3H 10T
cells calls V-79 cells
(platean  (exponentizl (exponental
Treatment phase) phasze)

Controls (0.37) (0.34)
0.3 Gy x 20 fractons 030 0.24
Gy = & fractions 0.36 0.33
). 0.55
1 0.11 0.2Q
& Gy » 1 fraction 0.06 0.10

From Smith L. G. et al. 1999
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Cell clonogenic survival for different
type of tissues (mouse)

Testis stem cells

Bone mamow W\ )

103 f colony forming Vg
units /

Mammary Jejunal
#;'r;nbla;ms cells crypt cells
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Effect of local or total body
irradiations
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| MARROW
30days
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5 days
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| IRRADIATION
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10-40d
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1 L I
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DOSE (Gy)

Figure 1. Dose-response curves for lethality after whole body or thoracic irradiation. The

27 th=29thNViay 2008

mice die at different times and over di
and the radiosensitivity of cells in th
rapidly proliferating tissues and late I
from Denekamp (19821

fferent time scales according to the turnover time
e indicated organs. Damage is manifest early in
n those with a slow proliferation rate. {Re-drawn
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Effect of dose rate

= Depend on LET. Smaller or absent for high LET radiations.

= At dose rates around 0.1 Gy/hour repair of cellular
radiation injury occur during the irradiation

= Hypersensitivity to doses less than 0.5 Gy, typically at 0.2—
0.3 Gy (Joiner et al. 2001) (stimulation of repair processes
at doses above 0.2-0.3 Gy?) Joiner, M.C., Marples, B.,
Lambin, P., et al., 2001.

= [ow-dose hypersensitivity: current status and possible
mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 49, 379—389.
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Dose rate (cGy/min)

E = Epidermis
L = Lung

G = Gut

M = Marrows

From Steel G. G. 2002

ViarilenarStreit=Bianchi



Depending on dose and dose-rates

= Different genes may get activated

= At very low doses and dose-rates
iIntracellular signalling and repair systems do
not get activated

= At high doses repair systems get activated.
Cells may survive radiations but carry miss-
repair lesions or even irreversible lesions,

| §
) ) ) ) )
P o ™) P . =) = . =) P
~d St ‘\-4 ~— b ~— ~d 4

~td d ~

~td ~
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Are effects detectable at very small .
doses?

Yes, many are the study carried out at small
doses using:

Cells in culture (oncogenic transformation) ,
Human lymphocytes
*Tumour induction in animals
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