
BigData and MapReduce with Hadoop 

Ivan Tomašić 

M. Sc. 

Jožef Stefan Institute, Ljubljana, Slovenia 



• Introduction 

 

• MapReduce paradigm 

 

• MapReduce application example 

 

• Conclusion 

 

Outline 



• What kind of data is BigData and where do we find it? 

 

• How do we store BigData? 

 

• How do we process and analyze BigData? 

 

• MapReduce - mechanism for parallel processing of big data 

 

Introduction 



• MapReduce is a programming model and an associated 

implementation for processing and generating large data sets. 

 

• MapReduce user specifies two functions: 

•  Map 

• Reduce 

 

• We have used MapReduce implemented in Apache Hadoop 

and distributed in Cloudera Hadoop distribution  

MapReduce paradigm 



• Apache Hadoop is an open-source software framework aimed 

for developing data-intensive distributed applications that can 

run on large clusters of commodity hardware. 

• The Hadoop project is  comprised of four modules:  

• Hadoop Common – support for other modules,  

• Hadoop Distributed File System (HDFS),  

• Hadoop YARN - a framework for job scheduling and cluster 

resource management 

• Hadoop MapReduce 

Apache Hadoop MapReduce implementation 



Hadoop MapReduce data flow 

• Hadoop divides the input data to be processed into fixed-size pieces called splits 

• Each Map task runs the Map function for each record in the split 

• Map tasks partition their outputs, each creating one partition for each Reduce task. 

• Each Map task’s output is firstly sorted and then transferred across the network to 

the node where its corresponding Reduce task is running. The sorted map outputs 

are merged, before being passed to the Reduce task. 

 

 

(Image) 



• Input data: 

• Computer simulation of two hours cooling of a human knee 

after surgery 

• Each data row is composed of following comma separated 

parameters: RT, D, IS, CT, T1, T2, … , T85 

• The results are in 100 files each approximately 44 MB.  

• Task: find the number of occurrences for 8 sets of T 

parameters with the same values – 8 cases. 

 

Analyzing computer simulation data with MapReduce 



The MapReduce jobs pipeline 
(for solving our test cases) 



MapReduce jobs 
(implementation details) 

• Job 1: 
– Map - Extarction of relevat columns 

– Reduce – counts the number of 

occurances for each combination of temp. 

 

• Job 2: 
– Map - inverts its key/value pairs 

– Reducer – outputs received key/value 

pairs 

– Framework does the sorting 

 

 

 

//Job 1 
public void map(LongWritable key,Text value,OutputCollector<Text,IntWritable> output, 
Reporter reporter) throws IOException{ 

String line = value.toString(); 
String[] lineElements  = line.split(","); 
String SearchString = null 
//depending on a case (Table 1) concatenate different lineElements in 
//SearchString 

… 
word.set(SearchString); 
output.collect(word, new IntWritable(1)); 

} 

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, 
IntWritable> output, Reporter reporter) throws IOException{ 

int sum = 0; 
while (values.hasNext()){ 
sum += values.next().get(); 
} 
output.collect(key, new IntWritable(sum)); 

} 

//Job 2 

public void map(LongWritable key, Text value, OutputCollector<IntWritable,Text> output, 
Reporter reporter) throws IOException{ 

String line = value.toString(); 
//\t is the default delimiter used by a reducer 
String[] lineElements  = line.split("\t");  
output.collect(new IntWritable(Integer.parseInt(lineElements[1])),  

new Text(lineElements[0])); 
} 

public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable, 
Text> output, Reporter reporter) throws IOException{ 

//there is only one value 

output.collect(key, values.next()); 
} 



Results 

• The ten highest numbers of temperature occurrences, for each 

test case: 

 

 

Case 8 Case 7 Case 6 Case 5 Case 4 Case 3 Case 2 Case 1 

294 298 294 298 387 391 8933 11159 

224 228 224 228 319 323 8860 11097 

211 215 217 227 294 298 8778 10945 

181 199 216 221 267 271 8351 10924 

168 194 211 220 232 264 7807 10729 

165 185 187 215 231 256 7695 10720 

161 185 181 215 224 253 7626 10706 

159 183 175 199 224 248 7551 10645 

158 172 168 199 216 247 7504 10602 

154 172 165 195 216 245 7456 10591 



Results 
(execution times) 

• The total time spent for Maps and 

Reduces in Job 1 and Job 2 for all 

test cases and on all executing 

nodes is: 

ts = 9903 + 1264 + 941 + 139 = 

=12247 

• total duration of the complete 

MapReduce analysis is: 

tm = 377 + 248 = 625 s 

• The ratio ts/tm is 19.6. 

 

Job1 

Case: 1 2 3 4 5 6 7 8 Total 

Total time spent by all 
maps in (s) 

1,122 1,080 1,119 1,187 1,121 1,287 1,162 1,826 9,903 

Total time spent by all 
reduces (s) 

100 80 91 148 108 207 118 413 1,264 

Map tasks avg. time (s) 
11 10 11 11 11 12 11 18 

The last Map task 
finished at  (s)* 

33 31 32 35 33 35 32 54 

Shuffle avg. time (s) 5 3 3 7 5 7 5 14 

The last Shuffle task  
finished at (s)* 

36 33 33 36 35 39 35 57 

Reduce tasks avg. time 
(s) 

2 2 3 5 3 9 4 20 

The last Reduce task 
finished at(s)* 

39 36 37 42 39 49 39 79 

CPU time spent (s) 588 618 667 790 686 933 719 1,494 6,494 

Total duration (s) 40 37 38 43 49 51 40 79 377 

  

Job2 

Case: 1 2 3 4 5 6 7 8 Total 

Total time spent by all 
maps in (s) 

32 31 51 78 59 184 64 443 941 

Total time spent by all 
reduces (s) 

4 4 10 16 12 31 12 50 139 

Map tasks avg. time (s) 
2 2 3 6 4 7 5 12 

The last Map task 
finished at  (s)* 

7 7 12 14 15 13 12 20 

Shuffle avg. time (s) 1 1 6 5 6 7 4 8 

The last Shuffle task  
finished at (s)* 

8 10 15 16 19 22 13 30 

Reduce tasks avg. time 
(s) 

1 1 3 10 5 23 8 40 

The last Reduce task 
finished at(s)* 

10 12 19 26 24 45 21 71 

CPU time spent (s) 7 9 55 95 70 185 73 330 823 

Total duration (s) 13 14 22 28 26 48 24 73 248 



• We successfully implemented the analysis of a large amount 

of simulation results with two MapReduce jobs. 

• The pipelining between jobs can be further refined if a need 

occurs. 

• The can be applied in a similar way on data sets coming from 

computer simulations of hydro turbines which is performed at 

Turboinštitut Ljubljana (TI), Slovenia. 

• Further tests on data from TI 

 

Conclusion 
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