
BigData and MapReduce with Hadoop

Ivan Tomašić

M. Sc.

Jožef Stefan Institute, Ljubljana, Slovenia

• Introduction

• MapReduce paradigm

• MapReduce application example

• Conclusion

Outline

• What kind of data is BigData and where do we find it?

• How do we store BigData?

• How do we process and analyze BigData?

• MapReduce - mechanism for parallel processing of big data

Introduction

• MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

• MapReduce user specifies two functions:

• Map

• Reduce

• We have used MapReduce implemented in Apache Hadoop

and distributed in Cloudera Hadoop distribution

MapReduce paradigm

• Apache Hadoop is an open-source software framework aimed

for developing data-intensive distributed applications that can

run on large clusters of commodity hardware.

• The Hadoop project is comprised of four modules:

• Hadoop Common – support for other modules,

• Hadoop Distributed File System (HDFS),

• Hadoop YARN - a framework for job scheduling and cluster

resource management

• Hadoop MapReduce

Apache Hadoop MapReduce implementation

Hadoop MapReduce data flow

• Hadoop divides the input data to be processed into fixed-size pieces called splits

• Each Map task runs the Map function for each record in the split

• Map tasks partition their outputs, each creating one partition for each Reduce task.

• Each Map task’s output is firstly sorted and then transferred across the network to

the node where its corresponding Reduce task is running. The sorted map outputs

are merged, before being passed to the Reduce task.

(Image)

• Input data:

• Computer simulation of two hours cooling of a human knee

after surgery

• Each data row is composed of following comma separated

parameters: RT, D, IS, CT, T1, T2, … , T85

• The results are in 100 files each approximately 44 MB.

• Task: find the number of occurrences for 8 sets of T

parameters with the same values – 8 cases.

Analyzing computer simulation data with MapReduce

The MapReduce jobs pipeline
(for solving our test cases)

MapReduce jobs
(implementation details)

• Job 1:
– Map - Extarction of relevat columns

– Reduce – counts the number of

occurances for each combination of temp.

• Job 2:
– Map - inverts its key/value pairs

– Reducer – outputs received key/value

pairs

– Framework does the sorting

//Job 1
public void map(LongWritable key,Text value,OutputCollector<Text,IntWritable> output,
Reporter reporter) throws IOException{

String line = value.toString();
String[] lineElements = line.split(",");
String SearchString = null
//depending on a case (Table 1) concatenate different lineElements in
//SearchString

…
word.set(SearchString);
output.collect(word, new IntWritable(1));

}

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException{

int sum = 0;
while (values.hasNext()){
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}

//Job 2

public void map(LongWritable key, Text value, OutputCollector<IntWritable,Text> output,
Reporter reporter) throws IOException{

String line = value.toString();
//\t is the default delimiter used by a reducer
String[] lineElements = line.split("\t");
output.collect(new IntWritable(Integer.parseInt(lineElements[1])),

new Text(lineElements[0]));
}

public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable,
Text> output, Reporter reporter) throws IOException{

//there is only one value

output.collect(key, values.next());
}

Results

• The ten highest numbers of temperature occurrences, for each

test case:

Case 8 Case 7 Case 6 Case 5 Case 4 Case 3 Case 2 Case 1

294 298 294 298 387 391 8933 11159

224 228 224 228 319 323 8860 11097

211 215 217 227 294 298 8778 10945

181 199 216 221 267 271 8351 10924

168 194 211 220 232 264 7807 10729

165 185 187 215 231 256 7695 10720

161 185 181 215 224 253 7626 10706

159 183 175 199 224 248 7551 10645

158 172 168 199 216 247 7504 10602

154 172 165 195 216 245 7456 10591

Results
(execution times)

• The total time spent for Maps and

Reduces in Job 1 and Job 2 for all

test cases and on all executing

nodes is:

ts = 9903 + 1264 + 941 + 139 =

=12247

• total duration of the complete

MapReduce analysis is:

tm = 377 + 248 = 625 s

• The ratio ts/tm is 19.6.

Job1

Case: 1 2 3 4 5 6 7 8 Total

Total time spent by all
maps in (s)

1,122 1,080 1,119 1,187 1,121 1,287 1,162 1,826 9,903

Total time spent by all
reduces (s)

100 80 91 148 108 207 118 413 1,264

Map tasks avg. time (s)
11 10 11 11 11 12 11 18

The last Map task
finished at (s)*

33 31 32 35 33 35 32 54

Shuffle avg. time (s) 5 3 3 7 5 7 5 14

The last Shuffle task
finished at (s)*

36 33 33 36 35 39 35 57

Reduce tasks avg. time
(s)

2 2 3 5 3 9 4 20

The last Reduce task
finished at(s)*

39 36 37 42 39 49 39 79

CPU time spent (s) 588 618 667 790 686 933 719 1,494 6,494

Total duration (s) 40 37 38 43 49 51 40 79 377

Job2

Case: 1 2 3 4 5 6 7 8 Total

Total time spent by all
maps in (s)

32 31 51 78 59 184 64 443 941

Total time spent by all
reduces (s)

4 4 10 16 12 31 12 50 139

Map tasks avg. time (s)
2 2 3 6 4 7 5 12

The last Map task
finished at (s)*

7 7 12 14 15 13 12 20

Shuffle avg. time (s) 1 1 6 5 6 7 4 8

The last Shuffle task
finished at (s)*

8 10 15 16 19 22 13 30

Reduce tasks avg. time
(s)

1 1 3 10 5 23 8 40

The last Reduce task
finished at(s)*

10 12 19 26 24 45 21 71

CPU time spent (s) 7 9 55 95 70 185 73 330 823

Total duration (s) 13 14 22 28 26 48 24 73 248

• We successfully implemented the analysis of a large amount

of simulation results with two MapReduce jobs.

• The pipelining between jobs can be further refined if a need

occurs.

• The can be applied in a similar way on data sets coming from

computer simulations of hydro turbines which is performed at

Turboinštitut Ljubljana (TI), Slovenia.

• Further tests on data from TI

Conclusion

Thank You

Ivan Tomašić

Jožef Stefan Institute, Ljubljana, Slovenia

ivan.tomasic@ijs.si

