
Dynamic Ranking 
of 

Cloud Providers

Paweł Czarnul
Dept. of Computer Architecture

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology 

G. Narutowicza, 11/12, 80-233, Gdańsk, Poland 
WWW: http://pczarnul.eti.pg.gda.pl

e-mail: pczarnul@eti.pg.gda.pl, phone + 48 58 347 12 88, fax. +48 58 347 28 63 

Bled, Slovenia, 25th October 2012

http://fox.eti.pg.gda.pl/~pczarnul
http://fox.eti.pg.gda.pl/~pczarnul
http://fox.eti.pg.gda.pl/~pczarnul
http://fox.eti.pg.gda.pl/~pczarnul
http://fox.eti.pg.gda.pl/~pczarnul
http://fox.eti.pg.gda.pl/~pczarnul
http://fox.eti.pg.gda.pl/~pczarnul
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl
mailto:pczarnul@eti.pg.gda.pl


 Problem and Solution

 Problem: how to rank cloud offers (IaaS, PaaS and 
SaaS) dynamically and prevent from the vendor 
lock-in issue?

 Solution:
 build a quality model along with definition of quality 

measurement procedures
 Develop a dynamic evaluation engine for IaaS, PaaS, SaaS
 adopt several techniques known from already existing 

price comparison engines
 filter measured data, in particular to avoid vendor lock-in 

issues
 adopt full-text search mechanism



 Available Cloud Offers
 IaaS - Infrastructure as a Service - making an infrastructure 

(computing, storage, operating system) with a given 
configuration available to a client, examples: Google Compute 
Engine, Amazon Elastic Compute Cloud (EC22), RackSpace 
Cloud Servers

 PaaS - Platform as a Service - offering a complete platform 
with particular software required by users; examples: Aneka, 
Google AppEngine, Windows Azure, RedHat Openshift, 
RackSpace Cloud Sites

 SaaS - Software as a Service - particular software that is 
managed by its provider and accessed by users from any 
location. Examples include Google Apps and Salesforce



Quality Assessment 
of Cloud Offers

 The following aspects to be addressed:
 quality model/ontology that defines metrics to be 

measured 
 quality measurement procedures - e.g. how frequently the 

metrics should be measured, this may be different for 
various metrics such as availability and price

 filters applied on top of the measured values: 
 preventing from short-term peaks in measured values to 

affect output
 preventing from one or few providers to take top places all 

the time by offering too good to be true conditions
 considering or not sudden changes in the history of the 

provider which may affect user decisions who might be 
afraid of similar changes in the future



Quality Ontology 
for Clouds

 The ontology will incorporate the following:

 accessibility_location_x – may characterize the network 
between the client in location_x and the service, several 
entries of this type could be inserted

 availability – characterizes the availability of the service 
itself. It could be measured by e.g. checking its availability 
vs availability of other services/servers in a similar 
geographical/provider location

 cost-effectiveness – evaluated by clients,
 reconfiguration ability – applicable to IaaS and PaaS,
 access – how easy it is to access the infrastructure and 

upload/download/execute applications.



Filtering and Vendor Lock-in
 Application of the following techniques:

 filters applied on top of measured values: 
 apply a low pass filter on the resulting measured metrics. 

For instance, a one time peak in measurements of a 
certain value might not change the overall score of the 
given metric.

 It may depend on the client whether to rely more just on 
recent measurements or the history

 to avoid vendor lock-in, consider a certain number of best 
offers and rotation on the first ranking places, provided 
that results returned for the services are closer to each 
other than a predefined threshold 



Evaluation Engine 
for IaaS, PaaS and SaaS

 The ontology will incorporate the following:
 categorization of features desired by the client (IaaS, PaaS):
 memory size,
 processor/core capabilities, GPU capability,
 Storage,
 operating system, particular software,
 access interface.
 full text search that allows formulation of desired functions 

in the form of human readable text (SaaS, IaaS and PaaS)

 → creation of runtime registries of particular IaaS, PaaS and 
SaaS offers

 → distinguish SaaS by categories e.g. tags



Evaluation Engine 
for IaaS, PaaS and SaaS

 The solution will allow:

 On the engine side:
 Ensure that no single 'best' offer is returned at all times
 Will consider the client requirements when searching for 

offers

 On the client side – the following requirements should be 
considered in the search:

 Already selected (in the past) cloud providers
 Consideration (or not) variations in performance of providers



 THANK YOU


