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Introduction T

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments

Big questions:
» testing theories, measure or exclude parameters, etc.
» how do we make decisions
» how do we get the most out of our data
» how do we incorporate uncertainties

Statistics is a very big field, and it is not possible to cover everything in 4
hours. In these talks | will try to:

- explain some fundamental ideas & prove a few things
- enrich what you already know
- exXpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is
not very interesting.

- Please feel free to ask questions and interrupt at any time
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Further Reading 1

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
- W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.
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Other lectures ¢

Fred James’s lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799
http://www.desy.de/~acatrain/

Glen Cowan’s lectures
http://www.pp.rhul.ac.uk/~cowan/stat cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly
The PhyStat conference series at PhyStat.org:

PhyStat Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)
About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links
= PHYSTAT 307 (CERN) £»05 (Oxford) €303 (SLAC) @02 (Durham)
= Phystat Workshops: 08 (Caltech) €306 (BIRS/Banff) €300 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...
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Comments on these lectures T

Fred James gave a terrific series of lectures. Largely based on
principles, focused on comparison of Bayesian & Frequentist
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useful examples
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principles, focused on comparison of Bayesian & Frequentist
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Comments on these lectures 1

Fred James gave a terrific series of lectures. Largely based on
principles, focused on comparison of Bayesian & Frequentist

Louis Lyons, also gave terrific lectures, basic principles plus some
useful examples

Glen Cowan gave lectures for CERN summer school (slightly lower
level) & great academic training lectures on multivariate algorithms

Dealing with uncertainty Finding an optimal decision boundary

In particle physics there are various elements of uncertainty:

Maybe select events with “cuts”:
)
theory is not deterministic - — <
L 4 ®
. »
quantum mechanics > ﬁ:' " % <q
random measurement errors
present even without quantum effects Or maybe use some other type of decision boundary:
things we could know in principle but don’t T PR L e
e.g. from limitations of cost, time, ... E"i;i.,a T2
HIV w Ty e “n H[ /Zé A
We can quantify the uncertainty using PROBABILITY accépt % accept’

Goal of multivariate analysis is to do this in an “optimal” way.

Glen Cowan Multivariate Statistical Methods in Particle Physics
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Comments on these lectures 1

Fred James gave a terrific series of lectures. Largely based on
principles, focused on comparison of Bayesian & Frequentist

Louis Lyons, also gave terrific lectures, basic principles plus some
useful examples

Glen Cowan gave lectures for CERN summer school (slightly lower
level) & great academic training lectures on multivariate algorithms

Bob Cousins gave a very comprehensive lecture to CMS on “statistics
in theory”

“Statistics in Theory™*:
Prelude to “Statistics in Practice”

Bob Cousins, UCLA
CMS Statistics Tutorial Series
May 8, 2008

*Background for sound work and for avoiding unsound statements.

Bob Cousins, CMS, 2008
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Comments on these lectures 1

So what will be the theme of these lectures?

Definitely not a cook book, | want to convey the fundamental concepts
in a fairly general setting.

But | don’t want to spend time on special cases or contrived examples.
| want to address the challenges of the LHC.

| also don’t want to discuss purely theoretical results if they aren’t
directly applicable. However, there are many theoretical results that
provide an insightful bound.

In theorg, there is no difference between theorg and Practice; In Practice, there is.
- Chuck Reid

There is no‘ching more Practical than a good theorg.

- James C. Maxwell

In particular, I’'m mainly interested in discovery and measurement, but |
will touch on goodness of fit and limits.

| also hope to sprinkle the lectures with advanced topics and expose
you to some modern approaches and unsolved problems.
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Outline ((T"

Lecture 1;
How we use statistics

A4

Probability axioms, Bayes vs. Frequentist, from discrete to continuous

A4

Parametric and non-parametric probability density functions

A4

Shannon and Fisher Information, correlation, information geometry, Cramér-Rao
bound

» A word on subjective and “objective” Bayesian priors

A4

Lecture 2

» Hypothesis testing in the frequentist setting

» The Neyman-Pearson lemma (with a simple proof)
Decision theory: utility, risk, priors, and game theory

v

Contrast hypothesis testing to goodness of fit tests with some warnings

v

Related comments on multivariate algorithms

v

v

Matrix element techniques vs. the black box
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Outline

Lecture 3:

A4

The Neyman-Construction (illustrated)

A4

Inverted hypothesis tests: A dictionary for limits (intervals)

A4

Coverage as a calibration for our statistical device

A4

Compound hypotheses, nuisance parameters, & similar tests

A4

Systematics, Systematics, Systematics
Lecture 4.

v

Generalizing our procedures to include systematics

v

Eliminating nuisance parameters: profiling and marginalization

v

Introduction to ancillary statistics & conditioning

v

High dimensional models, Markov Chain Monte Carlo, and Hierarchical Bayes

v

The look elsewhere effect and false discovery rate

W
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Lecture 1

@
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How We Use Statistics «T”'

Broadly speaking, we use statistical techniques for a few main purposes:
» Point estimation: what is the best estimate of a particular parameter
- eg. measurement of the Z boson mass

» Confidence Intervals: regions representing an allowable range of a
parameter (in a way to be made precise later)

- eg. 95% contours, upper-limits, lower-limits
» Hypothesis Testing: choosing between two (or more) hypotheses
- eg. Discover the Higgs, Discover SUSY, reject standard model

» Goodness-of-fit: quantify how well the data agrees with a particular
model

» Data reduction: how to reduce the raw data while loosing minimal
information tha is useful for our ultimate goal

In a broader context, there are related issues:
» Decision making: how do we make decisions in the face of uncertainty

» Where does the role of an experimentalist end? How does this impact
how we publish our results? or how we make decisions?
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Axioms of Probability

These Axioms are a mathematical starting
point for probability and statistics

1.probability for every element, E, is
non-negative P(F)>0 VECF =2"

2.probability for the entire space of
possibilities is 1 P(Q2) = 1.

3.if elements E; are disjoint, probability is
additive P(E\UE,U---) =Y P(E;).

Kolmogorov
Consequences: axioms (1933)

P(AU B) = P(A) + P(B) — P(AN B)
P(Q\ E)=1— P(E)
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Different definitions of Probability «T’/’

Frequentist

-
-
» defined as limit of long term frequency v ;) 2
» probability of rolling a 3 := limit of (# rolls with 3 / # trials) Q
- you don’t need an infinite sample for definition to be useful
sometimes ensemble doesn’t exist
« eg. P(Higgs mass = 120 GeV), P(it will snow tomorrow)
» Intuitive if you are familiar with Monte Carlo methods

» compatible with interpretation of probability in Quantum Mechanics
(though some argue this point). Probability to measure spin
projected on x-axis if spin of beam is polarized along +z

(= [ D] =

p—t

Subjective Bayesian
- Probability is a degree of belief (personal, subjective)
- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do
not obey laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Bayes’ Theorem 1

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B
P(B|A) P(A)

P(B)

= P(A) is the prior probability or marginal probability of A. It is "prior" in the sense
that it does not take into account any information about B.

= P(AIB) is the conditional probability of A, given B. It is also called the posterior
probability because it is derived from or depends upon the specified value of B.

= P(BIA) is the conditional probability of B given A. =

= P(B) is the prior or marginal probability of B, and acts as a normalizing constant AR -

P(A|B) =

Derivation from conditional probabilities

To derive the theorem, we start from the definition of conditional probability. The probability of event A given event B is

P(ANB)

P(A|B) = ~P(B)
Equivalently, the probability of event B given event A is

P(AN B)

P(B|A) = A

Rearranging and combining these two equations, we find
P(A|B) P(B) = P(AN B) = P(B|A) P(A).
This lemma is sometimes called the product rule for probabilities. Dividing both sides by P(B), providing that it is non-zero, we obtain Bayes' theorem:
P(ANB P(B|A)P(A
pajp) — PANB) PB4 PA)
P(B) P(B)
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... In pictures (from Bob Cousins)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

PA) = —— P(B) =

Whole space

P(A) x P(BIA) =

P(B) x P(AIB) =

Bob Cousins, CMS, 2008

9
P(AnB)= i

‘ 0 0
BE e "m P
D) 0 0
—

— P(A N~ B)

— P(BIA) = P(AIB) x P(B)/ P(A)

q
'D P(AIB) = " P(BIA) =

.‘-
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... In pictures (from Bob Cousins)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures

P(A) = L P(B) =

Whole space

Don’t forget about “Whole space” {). I will drop it from the notation

P(Aﬁ B): -

typically, but occasionally it 1s important.

Bob Cousins, CMS, 2008

— P(BIA) = P(AIB) x P(B)/ P(A)

0
'B P(AIB) = " P(BIA) =

.‘-

W
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Louis’s Example

P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%

W
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Bob’s Example ¢

A b-tagging algorithm gives a curve like this

| Background rejection versus Signal efficiency | TMVA
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One wants to decide where to cut and to optimize analysis
- For some point on the curve you have:

- P(btag| b-jet), i.e., efficiency for tagging b’s

- P(btag| not a b-jet), i.e., efficiency for background
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W

Bob’s example of Bayes’ theorem T
Now that you know:

» P(btag| b-jet), i.e., efficiency for tagging b’s

» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets tagged as b-jets, what
fraction of them are b-jets?

- |.e., what is P(b-jet | btag) ?

Kyle Cranmer (NYU CERN Academic Training, Feb 2-5, 2009 |7
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W

Bob’s example of Bayes’ theorem T
Now that you know:

» P(btag| b-jet), i.e., efficiency for tagging b’s

» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets tagged as b-jets, what
fraction of them are b-jets?

- |.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
- Need to know P(b-jet): fraction of all jets that are b-jets.
- Then Bayes’ Theorem inverts the conditionality:

* P(b-jet | btag) «P(btag|b-jet) P(b-jet)
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W

Bob’s example of Bayes’ theorem T
Now that you know:

» P(btag| b-jet), i.e., efficiency for tagging b’s

» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets tagged as b-jets, what
fraction of them are b-jets?

- |.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
- Need to know P(b-jet): fraction of all jets that are b-jets.
- Then Bayes’ Theorem inverts the conditionality:

* P(b-jet | btag) «P(btag|b-jet) P(b-jet)

Note, this use of Bayes’ theorem is fine for Frequentist
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Bayesian vs. Frequentist «T"

In short, Frequentist are always restricted to statements
related to

» P(Data | Theory) (deductive reasoning)

» the data is considered random

» each point in the “Theory” space is treated independently
- (no notion of probability in the “Theory” space)

Kyle Cranmer (NYU CERN Academic Training, Feb 2-5, 2009 18
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Bayesian vs. Frequentist

In short, Frequentist are always restricted to statements
related to

» P(Data | Theory) (deductive reasoning)
» the data is considered random

» each point in the “Theory” space is treated independently
- (no notion of probability in the “Theory” space)

Bayesians can address questions of the form:

» P(Theory | Data) « P(Data | Theory) P(Theory)

- intuitively what we want to know (inductive reasoning)

» but it requires a prior on the Theory
- [short discussion subjective vs. empirical Bayes goes here]
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Bayesian vs. Frequentist

In short, Frequentist are always restricted to statements
related to

» P(Data | Theory) (deductive reasoning)
» the data is considered random

» each point in the “Theory” space is treated independently
- (no notion of probability in the “Theory” space)

Bayesians can address questions of the form:

» P(Theory | Data) « P(Data | Theory) P(Theory)

- intuitively what we want to know (inductive reasoning)

» but it requires a prior on the Theory
- [short discussion subjective vs. empirical Bayes goes here]

Later | will discuss the “Likelihood Principle” and Likelihood-based
analysis: it’s a third approach to statistical inference
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An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events
- you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )
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An different example of Bayes’ theorem i

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events
- you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?

Kyle Cranmer (NYU CERN Academic Training, Feb 2-5, 2009 19
Y g

Monday, February 2, 2009



An different example of Bayes’ theorem

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events
- you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?

Answer: Cannot be determined from the given information!
 Need in addition: P(Higgs)
- no ensemble! no frequentist notion of P(Higgs)

- prior based on degree-of-belief would work, but it is
subjective. This is why some people object to Bayesian
statistics for particle physics
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A Joke 4

“Bayesians address the question everyone is
Interested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

- P. G. Hamer
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Some personal history ((Tﬁ
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Two centuries later (when this Book

Archbishop of Canterbury Thomas had become an official prayer book of
Cranmer (born: 1489, executed: the Church of England) Thomas Bayes
1556) author of the “Book of was a non-conformist minister
Common Prayer” (Presbyterian) who refused to use

Cranmer’s book
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a little on Information Theory

@
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Information Theory

How much information in this message?

1000110101001011
N————  —

16 entries

W
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Information Theory

How much information in this message?

1000110101001011
N————  —

16 entries

What about this one

01010101010101
N———— —

16 entries

W
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Information Theory
How much information in this message?

1000110101001011
N————  —

16 entries

What about this one
01010101010101
W

16 entries

... and this one?

abcdabedabedabed
%/_/

16 entries

W
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Informatlon Theory

How much information in this message?

1000110101001011
N————— —

16 entries

- 16 bits? (bit is unit when log is base 2)
- it depends on probabilities of 0,1

In 1870’s Boltzman and Gibbs defined entropy:

S = —kg)_ pilnp

In 1948, Calude Shannon uses entropy as a
centerpiece of his “Mathematical Theory of
Communication” eg. information theory

— Y plx)logp(x

reX

.

0 0.5

Pr(X =1)

|

1.0

- information maximized when pi all equal
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Probability Density Functions ((T"

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |x,x + dx]) = f(z)dx

Note, f(x)is NOT a probability

Equivalent of second axiom...

/wf@szl

— OO
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Cumulative Density Functions
Often useful to use a cumulative distribution:

»in 1-dimension: / F(2)de' = F(x)

x - = x L

=04 - E T 1r ]
0.35 = Z i
- ] 0.8 ]
03 F E - ]
0.25 2 E 0.6 ]
0.2 E - i
0.15 F = 0.4 N
0.1F = - ]
0.05 = - i
0 3 3 0-3 3
X X
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Cumulative Density Functions ((T"

Often useful to use a cumulative distribution:
»in 1-dimension: / F(2)de' = F(x)

= - > L
=04 - i 1

0.35 = -

o 0.8

0.3 = _ L

0.2 E

0.15 F = 0.4

01F ] B

= 0.2 —

0.05 = - L

O-3 2 1 0 1 2 3 0-3

» alternatively, define density
as partial of cumulative:

fla) = 2212
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Cumulative Density Functions ((T"

Often useful to use a cumulative distribution:
»in 1-dimension: / F(2)de' = F(x)

Eoafr X g
0.35 - = I
03[ = 08
0.25 E 0.6
02F = ]
0.15 = 0.4
0'1;_ E 0.2
0.05 i
O—(;HI-2HH-1IHIOIHI1HH2HI_3 0—3I. I-2HII-1HHOHH1IHI2HII3
X X
» alternatively, define density » similar to relationship of total
as partial of cumulative: and differential cross section:

- 0F(x) 100

fla) = = F(B)=— 57
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Cumulative Density Functions 1

W

Often useful to use a cumulative distribution:

»in 1-dimension:

é 0.4 ;_I T T T T T T T T T T T T T T T _:

0.35 =

0.25 |- =

» alternatively, define density
as partial of cumulative:

fla) = 22

SN—"

L

/ ; F(a')da' = F(z)

s

0.8 N
0.6 N
04 —

0.2 —

0—3 | -2 -1 0 1 2 3

» similar to relationship of total
and differential cross section:

1 0%

oz
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Cumulative Density Functions ((T"

Often useful to use a cumulative distribution:

»in 1-dimension: / F(2)dz' = F(a)

—~

X

Zoaf ERE 2Rl :
0.35 F = : i
- . 0.8 — —
0.3 E i ]
025 oo e ST W —: 06— ]
0.2 | : E E
0.15 F 041" ~
0.1 | Rootaussian pdf( lineohape , Gouss ' ,X,m,width); : I -
C - 0.2 ]
0.05 |- = Z i
& TR N
X X
» alternatively, define density » similar to relationship of total
as partial of cumulative: and differential cross section:
2
OF (x) 1 0¢c
fla) = f(E,n) =
Ox o OE0On
Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5,2009 26

Monday, February 2, 2009



Bayes’ Theorem: the continuous case

Bayesian Statistics — general philosophy

In Bayesian statistics, use subjective probability for hypotheses:

probability of the data assuming

hypothesis H (the likelihood prior probability, i.e.,
P ( I\ 4 before seeing the data

P(#|H)w(H)

PUH|E) = [ P(Z|H)~(H) dH

/

posterior probability, 1.e., normalization involves sum
after seeing the data over all possible hypotheses

Bayes’ theorem has an “if-then” character: If your prior
probabilities were st (H), then it says how these probabilities
should change in the light of the data.

No unique prescription for priors (subjective!)

G. Cowan 2008 CERN Summer Student Lectures on Statistics 14
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Parametric vs. Non-Parametric PDFs «T’/’

Many familiar pdfs are considered parametric
» eg. a Gaussian G(z|u, o) is parametrized by (u, o)
» defines a family of functions
» allows one to make inference about parameters
» some examples have very complicated parametric pdfs
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Parametric vs. Non-Parametric PDFs

Many familiar pdfs are considered parametric
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» defines a family of functions
» allows one to make inference about parameters
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Parametric vs. Non-Parametric PDFs ((T”

Alternatively, one can consider non-parametric pdfs
From empirical data, one has emplrlcal PDF

femp__z(sw_xz

X)
o
~

f(

e
w > o o

wllIII|IIII|IIII|IIII|IIII|IIII|IIII|

o
N

o
—

lelIII|IIII|IIII|IIII|IIII|IIII|IIII|

NN
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Parametric vs. Non-Parametric PDFs ((T”

Alternatively, one can consider non-parametric pdfs
or, one can make a histogram

w.,S ]' w.S
hist(T) = N th |

< 0.7

o
»

o
o

o
~

T
< ;

o
w

o
N

AN

L

2 -1 0

N

/ |
I |||||||||||||||||||||||||||||||:

e
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Parametric vs. Non-Parametric PDFs

Alternatively, one can consider non-parametric pdfs
but they depend on bin width and starting position

w.,S ]‘ w.S
hist(T) = N th ’

8 07 _—I T T T T | T T T |—_
0.6 -
0.5 i -
O :=—F’\/| I I \ | ‘ II I |‘ H ‘ I M > _:
-3 -2 -1 0 1 2 3
X
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Parametric vs. Non-Parametric PDFs

Alternatively, one can consider non-parametric pdfs
“Average Shifted Histogram minimizes effect of binning

fASH ZKw T — T;)

% 0.7

o
»
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Kernel Estimation T

Kernel estimation is the generalization of Average Shifted
Histograms

=3 i (i)

AN 1/5 7 s 3}
M) = <§> fo(a:z)n -

“the data is the model”

K.Cranmer, Comput.Phys.Commun. 136 (2001).
- [hep-ex/0011057]

Probability Density

| I | | | | | | | | | | . | | | | | | | | | | |
0.94 0.95 0.96 0.97 0.98 0.99 1
Neural Network Output

Adaptive Kernel estimation puts wider kernels in regions of
low probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Multivariate PDFs ¢

Kernel Estimation has a nice generalizations to higher
dimensions

» practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N- Correlations 006" tthar sample

0.0143% B

dim KEYS pdf described o 21:3_:__:__:_:

in RooFit. pdf from previous W s |
slide. —
These pdfs have been = RooNDKeys pdf T 3300 250 20 ’
used as the basis for a automatically mdh @I
: : models (fine)
”? u '“.Va.r Iate. correlations
discrimination between
technique called “PDE” observables ...
, fs(Z)
fs(Z) + fo(Z)
Max Baak
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Correlation / Covariance

@

Correlation is a common way to describe how one variable
depends on another

» however, it only captures the lowest order of dependence
between variables, and

cov|x,y| = Vyy = El(z — pz)(y — ty))]

Pxy —

~ covzx,y]

>
X

O'gjo'y

A

Y

/
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] «
Propagation of errors T'

The Covariance matrix plays a central role in propagation of
errors fromzx to ¥

L,y=1 Lr Ty =g

but remember, that this is only the first-order in the Taylor
expansion

—

T=l

V@) =y + 3 (2 i)
1=1 t
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Mutual Information 1

A more general notion of ‘correlation’ comes from
Mutual Information:

p(z,y) I(X;Y)=H(X)— H(X|Y)
I(X:Y)=> > plz,y)log ' , — H(Y) — H(Y|X)
yeY zeX pi(x) pa(y) — H(X)+ H(Y) - H(X,Y)

v it is symmetric: 1(X;Y) = I(Y;X)
» if and only if X,Y totally independent: 1(X;Y)=0
» possible for X,Y to be uncorrelated, but not independent

A

Y Mutual Information doesn’t

seem to be used much within
HEP, but it seems quite useful

>

X
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Remaining topics for “Lecture 1” T

Lecture 1:

» How we use statistics
» Probability axioms, Bayes vs. Frequentist, from discrete to continuous
» Parametric and non-parametric probability density functions

» Shannon and Fisher Information, correlation, information geometry,
Crameér-Rao bound

» A word on subjective and “objective” Bayesian priors
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Next Time

Lecture 2
» Hypothesis testing in the frequentist setting
» The Neyman-Pearson lemma (with a simple proof)

» Decision theory: utility, risk, priors, and game theory
» Contrast hypothesis testing to goodness of fit tests with some warnings
» Related comments on multivariate algorithms
» Matrix element techniques vs. the black box
Lecture 3:
» The Neyman-Construction (illustrated)
» Inverted hypothesis tests: A dictionary for limits (intervals)
» Coverage as a calibration for our statistical device
» Compound hypotheses, nuisance parameters, & similar tests
» Systematics, Systematics, Systematics
Lecture 4.
» Generalizing our procedures to include systematics
» Eliminating nuisance parameters: profiling and marginalization

» Introduction to ancillary statistics & conditioning

» High dimensional models, Markov Chain Monte Carlo, and Hierarchical Bayes

» The look elsewhere effect and false discovery rate
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