
1 



2 

 What’s uRiKA? What’s YarcData? 

 What are our basic assumptions? (Some are probably different from yours) 

 What’s different about our hardware platform? 

 What’s the software architecture? 

 So, is it fast? 

 Where are we going with this system, technically? 

 Who cares? 

 

 

 

 

 

 

 

 

 



3 

 Cray Research founded in 1972 by Seymour Cray 
 
 

 Bought by SGI in 1996, sold to Tera in 2000; 
Tera changed its name to Cray Inc. Until then, 
Tera was developing an exotic multithreaded 
supercomputer… 

 
 Cray’s main-line product: big distributed-memory 

supercomputers. 



4 
Slide 4  

• 37,000 Opteron quad-core processors 

• 1+ Petaflops, sustained, on several applications 

• XK7 configuration includes GPUs; 20 PFLOPS peak 



5 

“universal RDF information 

Knowledge Appliance”: a SPARQL 

query engine in an XMT2 

Based on the XMT2 “eXtremely 

MultiThreaded system. 

Uses the XT5 

cabinet/board/interconnect 

infrastructure. 

http://inside.us.cray.com/depts/marketing/Cray Image Library/Cray Systems and System Logos/XMT/Cray XMT 2.png


6 

A subsidiary of Cray, focused on marketing the uRiKA system. 



7 

 …that you and I may share: 
 SPARQL is a reasonable/useful query language standard. 

 
 RDF is a reasonable/useful data representation standard. 

 
 It’s interesting that a set of RDF triples defines a directed graph. 
 

 

 …and that I make, that you may not share: 
 It’s extremely important – critical –  that a set of RDF triples defines a directed graph. Our 

customers want interactive speed on complex queries against graph-oriented data. 
 

 The Semantic Web is a third-order consideration at best. The database is in our box. The first-
order consideration is to provide fast answers to complex queries against data in our box. 
 

 We’ll begin with the SPARQL standard; we won’t end with it. 
 

 Some of our customers care about ontologies and inference; others don’t. 



8 
Slide 8  



9 

Slide 9  

Multicore    Memory 

Multithread 

Vector 

Amortize latency by 

bringing in truckloads of 

data at once 

Tolerate latency by working on tons of 

threads at once, which eliminates 

processor stalls and keeps the memory 

fetching pipeline busy 

Minimize latency by a hierarchy of 

memory speeds, data reuse, 

exploiting locality 



1

0 

 Many threads per processor core; small 
thread state 

 Thread-level context switch at every 
instruction cycle 

registers 

program 
counter 

ALU 

conventional 

processor 
multithreaded processor  

“stream” 



1

1 

• Conventional processor • Multithreaded processor 

When one or a few 

threads stall, 

memory/network  

become idle 

Although some threads 

stall, others keep issuing 

local/remote memory 

requests, keeping most 

precious resources busy 

network 

memory 
memory 

network 



1

2 

 Huge data structures 
 Too large for one node of 

conventional system 
 No locality of reference 
No way to partition data 

structure so that most 
references are local 

 But lots of parallelism 
 i.e., great big ugly graphs 



1

3 

“Jena” open source 

SPARQL engine 

SELECT ?p ?x 

WHERE { 

      (?x type person) 

      (?p sells “DVD”) 

      (?x shops-at ?p) 

} 

 

interface to Web 

 

display or forward 

results 

 

 

generate low-level query 

uRiKA service nodes uRiKA compute nodes 

API 

Send 

query 

Receive 

results 

Parse, 

interpret 

query 

 

 

 

 

 

 

 

Translate, 

send 

results 

 

 

SCAN 

 

JOIN 

  

MERGE 

 

OPTIONAL 

 

Memory-

resident 

database 

UNION 

 
FILTER 

… 

Query Engine 

13 

SPARQL query 



1

4 

 uRiKA has a huge, shared memory. We trade space for time 
almost every time. 
 Index arrays for every field (subject, predicate, object, subgraph) of the database 
 Use hashing for lookups and comparisons. Hashed dictionary lookups, hash joins 

 Use operations that the hardware and compiler are good at 
 Scan loops through 1D arrays 
 Write loops that the compiler can turn into recurrences or reductions 

 Use well-established database optimizations 
 Center on the parts of the query that produced the fewest intermediate results 
 Schedule parts of the query in the order that minimizes work 

 Preprocess as much data as possible at load time 
 Use lookups rather than computation when processing a query 
 Represent subject, predicate object names as integers 
 Run preprocessing in parallel so that it’s still fast 



1

5 



1

6 

29 

2.645 

0 

500 

1.000 

1.500 

2.000 

2.500 

3.000 

uRIKA Hadoop Cluster 

Se
co

n
d

s 

LUBM100K Complex Analysis (Q9) 
 

16 

7 

1.735 

0 

500 

1.000 

1.500 

2.000 

uRIKA Hadoop Cluster 

Se
co

n
d

s 

LUBM100K IO Capability (Q14) 
 



1

7 

3,0 
6 29 21 

280 

2.636 

0 

500 

1.000 

1.500 

2.000 

2.500 

3.000 

LUBM8K  LUBM25K  LUBM100K 

Se
co

n
d

s 

uRIKA 

Hadoop 
Cluster 

17 



1

8 

 SPARQL is pretty good at asking questions about patterns in 
the data 
 “Show me any grad student who attends a class taught by his/her adviser, who has co-

authored a paper with the adviser, and attended a conference with the adviser and another 
professor in the same department” 

 It’s not so good at asking overall questions about the 
structure of the graph 
 “If this graph were looked at as a communication network, through which nodes does most of 

the communication flow?” 
 “Are there clusters of nodes that connect with each other much more densely than with the 

rest of the graph?” 
 “Is there a way to get from Node X to Node Y? What’s the shortest way?” 

 We are looking at ways to add these “global” graph analysis 
capabilities to the system. 
 Existing graph algorithms toolkits, such as the Knowledge Discovery Toolkit 
 Domain-specific graph analysis languages, such as Green-Marl 
 Either would be extended to be able to work with the RDF data items 

 As well as… 
 Reification 
 Security 
 Dynamic inference 
 etc. 



1

9 

 Intelligence/law enforcement/cyber-security 
 Some are traditional XMT customers; others want a system based on RDF/SPARQL 

 Health & life sciences 
 Bioinformatics community has adopted RDF/SPARQL more than any other scientific 

community 

 Finance/banking 
 Problems like money laundering, insider trading amenable to graph-oriented queries 

 Traditional HPC 
 EG new approaches to climate modeling: “teleconnections” – distant places whose weather 

has large positive or negative correlation 

 



2

0 



2

1 



2

2 

( project  ?x  ?y 

   (leftjoin 

      (filter ( >  ?y  “1.0”^^xsd:double ) 

          ( quadpattern 

              ( quad  ?x  <pred1>  ?a  ) 

              ( quad  ?a  <pred2>  ?y  ) 

          ) 

       ) 

       ( quadpattern 

           ( quad  ?a  <pred3>  ?b ) 

       ) 

   ) 

) 

QTS QTS FILTER LJOIN PROJECT IRA 

Database 

 g    s     p     o 

Index arrays 

 g          s          p          o 

intermediate 

results stack 

IRA 

“SPARQL Algebra” version of query 

Query gets translated into 

“Dispatcher List” 


