

Semantic Sentiment Analysis of Twitter

Hassan Saif, Yulan He & Harith Alani Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom

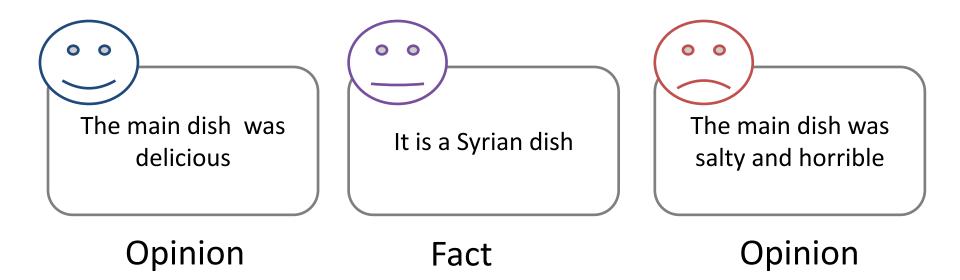
The 11th International Semantic Web Conference ISWC 2012 Boston- USA

Outline

- Background
- Twitter Sentiment Analysis
- Related Work
- Semantic Sentiment Analysis
- Evaluation
- Demo
- Conclusion
- Future Work

Sentiment Analysis

"Sentiment analysis is the task of identifying positive and negative opinions, emotions and evaluations in text"



Sentiment Analysis

Lexical-Based Approach

• Building a better dictionary



Sentiment Lexicon

Sentiment Analysis

Machine Learning Approach

• Finding the Right Feature



The short length of status update

- Language Variations
- Open Domain

Motivation

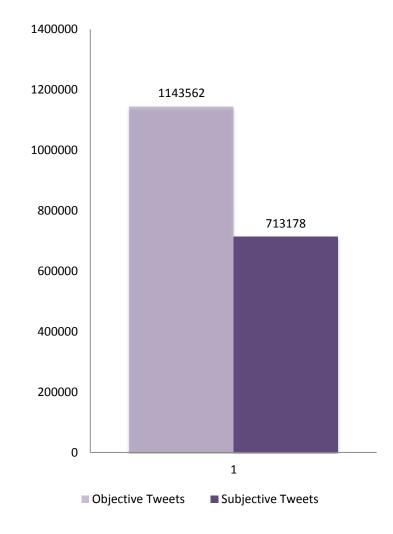
2010 U.S. Midterm Elections. Conover et al. (2011)

Stock Market Behavior Bollen et al. (2010)

U.S. Presidential TV Debate in 2008 DIAKOPOULOS, N., AND SHAMMA, D. (2010)

UK General Elections, 2010

He & Saif (2012)



UK General Elections Corpus

- Distant Supervision
 - Supervised classifiers trained from noisy labels
 - Tweets messages are labeled using emoticons
 - Data filtering process

- Followers Graph & Label Propagation
 - Twitter follower graph (users, tweets, unigrams and hashtags)
 - Start with small number of labeled tweets
 - Applied label propagation method throughout the graph.

- Feature Engineering
 - Unigrams, bigrams, POS
 - Microblogging features
 - Hashtags
 - Emoticons
 - Abbreviations & Intensifiers

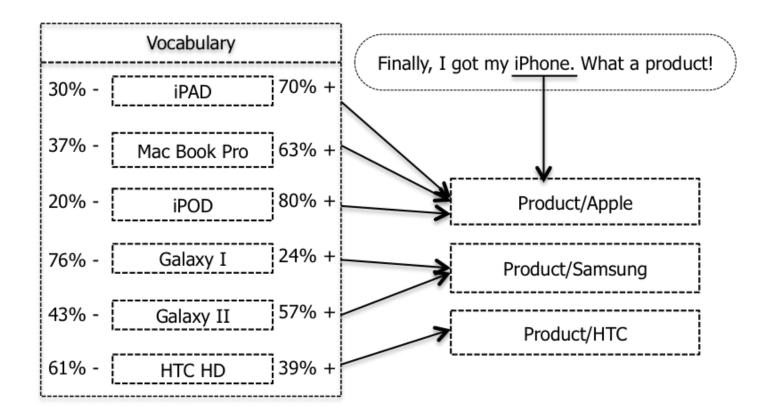
Semantics

Semantic Sentiment Analysis

Extract semantic concepts from tweets data and incorporate them into the supervised classifier training.

Semantic Sentiment Analysis

The Idea



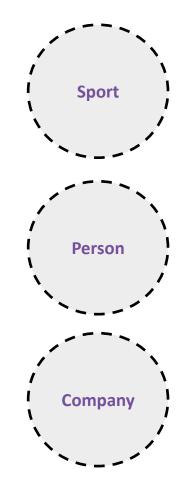
Semantic Features Incorporation

(1) Shallow Semantic Methods (Replacement, Augmentation)

@Stace_meister Ya, I have Rugby in an hour

Sushi time for fabulous Jesse's last day on dragons den

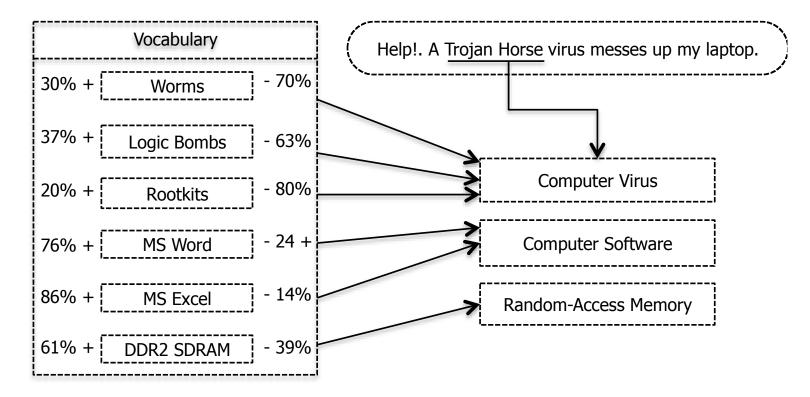
Dear eBay, if I win I owe you a total 580.63 bye paycheck



Semantic Features Incorporation

Interpolation Method

$$P_s(w|c) = (1 - \alpha)P_u(w|c) + \alpha \sum_j P(w|s_j)P(s_j|c)$$



Semantic Concept Extraction

- Using three different third-party tools: Zemanta, OpenCalais and AlchemyAPI
- AlchemyAPI extracted the most number of concepts and has the highest entity-concept mapping accuracy

No. of Concepts Entity-Concept Mapping Accuracy (%)								
Extraction Tool	Extracted	Evaluator 1	Evaluator 2	Evaluator 3				
AlchemyAPI	108	73.97	73.8	72.8				
Zemanta	70	71	71.8	70.4				
OpenCalais	65	68	69.1	68.7				
Table 2 Evolution regults of Alabomy ADL Zomanta and OpenCalais								

Table 2. Evaluation results of AlchemyAPI, Zemanta and OpenCalais.

Datasets

Dataset	Туре	No. of Tweet	s Positive	Negative
Stanford Twitter Sentiment Corpus (STS)	Train	60K	30K	30K
Stamord Twitter Seminent Corpus (STS)	Test	1,000	470	530
Health Care Reform (HCR)	Train	839	234	421
Health Cale Kelolin (HCK)	Test	839	163	536
Obama-McCain Debate (OMD)	n-fold cross validation	1,081	393	688

Baselines

Unigram Features:[I, like, the, new, iPad]

I Like the new iPad

- Part-of-Speech Features
 [I(p), like(v), the(d), new(a), iPad(n)]
- Sentiment-Topic Features
 [I, like, the, new, iPad] [(1_0), (1_1), (1_1), (1_0)]

Semantic Features Incorporation (F-measure)

Method	STS	HCR	OMD	Average
Semantic replacement	74.10	61.35	71.25	68.90
Semantic augmentation	77.65	63.65	72.70	71.33
Semantic interpolation	83.90	66.10	77.85	75.95

Average sentiment classification accuracy (%) using different methods for incorporating the semantic features. Accuracy here is the average harmonic mean (F measure) obtained from identifying positive and negative sentiment.

Cross Comparison (F-Measure)

Detect	Feature	Positive Sentiment			Negative Sentiment			Average		
Dataset	reature	Р	R	F 1	P	R	F1	P	R	F 1
	Unigrams	82.20	75.20	78.50	79.30	85.30	82.20	80.75	80.25	80.35
STS	POS	83.70	75.00	79.10	79.50	86.90	83.00	81.60	80.95	81.05
515	Sentiment-Topic	80.70	82.20	81.40	83.70	82.30	83.00	82.20	82.25	82.20
	Semantics	85.80	79.40	82.50	82.70	88.20	85.30	84.25	83.80	83.90
	Unigrams	39.00	36.10	37.50	81.00	82.80	81.90	60.00	59.45	59.70
HCR	POS	56.20	22.00	31.70	80.00	94.70	86.70	68.10	58.35	59.20
IICK	Sentiment-Topic	53.80	47.20	50.30	84.50	87.60	86.00	69.15	67.40	68.15
	Semantics	53.60	40.40	46.10	83.10	89.30	86.10	68.35	64.85	66.10
	Unigrams	64.20	70.90	67.10	83.30	78.60	80.80	73.75	74.75	73.95
OMD	POS	69.50	68.30	68.70	83.10	83.90	83.40	76.30	76.10	76.05
UMD	Sentiment-Topic	68.20	75.60	71.70	87.10	82.40	84.70	77.65	79.00	78.20
	Semantics	75.00	66.60	70.30	82.90	88.10	85.40	78.95	77.35	77.85
	T 1 1 0 0		•		1 0	11 1 0	0			

Cross Comparison (F-Measure)

Features	Positive Sentiment			Negat	tive Ser	ntiment	Average		
reatures	P	R	F1	P	R	F1	P	R	F1
Unigrams	61.80	60.73	61.03	81.20	82.23	81.63	71.50	71.48	71.33
POS	69.80	55.10	59.83	80.87	88.50	84.37	75.53	72.23	72.48
Sentiment-Topic	67.57	68.33	67.80	85.10	84.10	84.57	77.02	76.73	76.75
Semantics	71.47	62.13	66.30	82.90	88.53	85.60	77.18	75.33	75.95

Table 9. Averages of Precision, Recall, and F measures across all three datasets.

Tweenator

				Tweenator
me	Tweets	Semantic Sentiment	Sentiment Detection	n Sentiment Tracking
By	y the way	I never imagined that	at I'd have 111 followers.	rs. Thank you all, even the robots :)
Pos	sitive :)	Negative :(Neutral : (Can't Decide	
- Li	am doing	a study of Think & Gro	ow Rich – Wow – it's ama	nazing how timeless the law of attraction is! So now we're on our 6 step program! :)
Pos	sitive :)	Negative :(Neutral : (Can't Decide	
@	stewiebr	ittany no i dont even k	now how to ride it :(
Pos	sitive :)	Negative :(Neutral : 0	Can't Decide	
a	msdram	a hey missed ya at the	meeting sup mama :(
Pos	sitive :)	Negative :(Neutral : (Can't Decide	

www.tweenator.com

Conclusion

- Twitter Sentiment Analysis is very challenging problem.
- We proposed using semantic features for Twitter SA using three different methods: replacement, augmentation and interpolation.
- We found that the interpolation method outperforms the other two methods.
- We compared our features with three different baselines and showed that semantic features on average are more precise amongst them.
- There is no winning approach. The accuracy of classifying with some feature selections can be sensitive to the size of the datasets and their topical-focus.

Future Work

- Extracting Semantic Entities and Concepts
 - Explore more fine-grained approach for the entity extraction and the entity-concept mapping
- Selective Interpolation Method
 - Interpolate semantic concepts based on their contribution to the classification performance.
- 3-way Sentiment Analysis
 - Propose a hyper classifier that is able to work with Objective and Subjective tweets.

References

[1] AGARWAL, A., XIE, B., VOVSHA, I., RAMBOW, O., AND PASSONNEAU, R. Sentiment analysis of twitter data. In Proceedings of the ACL 2011 Workshop on Languages in Social Media (2011), pp. 30–38.

[2] BARBOSA, L., AND FENG, J. Robust sentiment detection on twitter from biased and noisy data. In Proceedings of COLING (2010), pp. 36–44.

[3] BIFET, A., AND FRANK, E. Sentiment knowledge discovery in twitter streaming data. In Discovery Science (2010), Springer, pp. 1–15.

[4] GO, A., BHAYANI, R., AND HUANG, L. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford (2009).

[5] KOULOUMPIS, E., WILSON, T., AND MOORE, J. Twitter sentiment analysis: The good the bad and the omg! In Proceedings of the ICWSM (2011).

 [5]LIN, C., AND HE, Y. Joint sentiment/topic model for sentiment analysis. In Proceeding of the 18th ACM conference on Information and knowledge management (2009), ACM, pp. 375–384.
 [6] PAK, A., AND PAROUBEK, P. Twitter as a corpus for sentiment analysis and opinion mining. Proceedings of LREC 2010 (2010).

[7]SAIF, H., HE, Y., AND ALANI, H. Semantic Smoothing for Twitter Sentiment Analysis. In Proceeding of the 10th International Semantic Web Conference (ISWC) (2011).

[8] Saif, H., He, Y. and Alani, H. (2012) Alleviating Data Sparsity for Twitter Sentiment Analysis, Workshop: The 2nd Workshop on Making Sense of Microposts (#MSM2012): Big things come in small packages at World Wide Web (WWW) 2012, Lyon, France

Thank You

Email: hassan.saif@open.ac.uk Twitter: hrsaif Website: tweenator.com