
1

Semantic Processing of 
Sensor Event Stream by using 

External Knowledge Bases

Kia Teymourian and Adrian Paschke

Freie Universität Berlin

Presenter: Kia Teymourian
Workshop SSN 2012

ISWC2012 - Boston 9-14. November 2012 



2

Motivation

• In some of the use cases huge amount of 
Background Knowledge about Sensor 
Events are available. 

• Fusion of external Knowledge Bases with the 
event stream can improve the 
expressiveness, agility and flexibility of 
event processing systems. 



3

Example – Semantic Enrichment of Events

AG Corporate Semantic Web
http://www.inf.fu-berlin.de/groups/ag-csw/

Stream of Product IDs
                                       {  (Product_id, “X1234”) ,  (ProductionDate, 5/1/2012)  }

                        { (Product_id, “X1235”) ,  (ProductionDate, 6/1/2012)} 

Query:
Select food products, which include substances capable of causing cancer 
(Carcinogen)  and 
are produced in the Europe. 

{(:Company_1, produce, :Product_X1),
(:Product_X1, inludes,  :Tartrazine (E102)), 
(:Product_X1, inludes, :Erythrosine (E127)),

(:Company_1, production_facilities_in, :Berlin), 
(:Berlin, is_in, :Germany),

(:Germany, is_in, :Europe)}

Knowledge Base



4

Knowledge-based Event Processing

Events

Event Stream

Complex
Events 

Event 
Processing

User Event 
Query

Knowledge Base

Knowledge Base

T-Box
A-BoxA-Box Update 

Stream

DL Reasoning



5

Event Detection Pattern

1.Event Algebra Operation
● Sequence, Disjunction, Conjunction, Simultaneous, Negation, etc.

2.SPARQL Query
● Operations to detect events based on their semantics (related 

meaning in background knowledge)

3.Stream Windowing Operation
● Operations to slide event stream

{ [SPARQL Query] , 
   [Event Algebra Operation], 
   [SPARQL Query],  
   [Event Algebra Operation], 
   [SPARQL Query], ...
   } [Sliding Window Operation]



6

Example of Complex Event Pattern

c
3

?S3

c1

?S1

?S4

p1

Knowledge Base

Time
e1

a1

a2

a1

a2

a1

a2

Events

c
2

?S2

?S6

?S5

p4p5

p3

e2e3

p2

{ 
{ (?e1, c1, ?s1) .
   (?s1, p*, ?s) . }

[?e1 SEQ ?e2]
[Within 2 min.]

{ (?e2, c2, ?s2) .
   (?s2, p*, ?s) . } }

[?e2 SEQ e3] 
[Within 5 min.]

{ (?e3, c3, ?s3) .
   (?s3, p*, ?s) . } 
}

Query



7

Event Query Rule Categories

• Categorization are based on the following factors: 
1) Number of SPARQL queries on KB in each 

event processing step
2) Whether the SPARQL query depends on 

incoming event data and is generated based on 
their attributes 

3) Number of event attributes used for 
generating SPARQL queries

4) Number of events used to generate SAPRQL 
queries (Events in a Window of Stream or Single 
Event)



8

Event Query Rule Categories

• Classification of most relevant and interesting event query 
rules based on embedding form of SPARQL predicates inside 
event query rule. 

• Category – A: Single SPARQL query inside the rule

• Category – B: Several SPARQL queries are embedded in 
an event query rule and combined with event algebra 
operations.

• Not a complete categorization of all possible rules.



9

Pseudocode Example of Category A1

stream(CEvents) :- 
SResults = sparql_select(KB_id, SQuery),
eProcessing(SResults, EStream, EQuery).

CEvents  =  Detected Complex Events    
EStream  =  Raw event stream    
EQuery   =  Event pattern query 
SResult  =  Result set of the SPARQL query
SQuery   =  SPARQL query part of event sQuery rule 
KB_id    =  ID of the target KB   
sparq_select  =  Rule predicate used for querying the external KB



10

Pseudocode Example of Category A2

1     stream(CEvents) : −

2     ETuple = getSingelEvent(EStream, Udef),
 
3     SQuery = generateSPARQL(UQuery, ETuple),

4     SResults = sparql_select(KB_id , SPQuery),

5     eProcessing(SResults, EStream , EQuery).

CEvents  =  Detected Complex Events    
EStream  =  Raw event stream    
EQuery   =  Event pattern query 
SResult  =  Result set of the SPARQL query
SQuery   =  SPARQL query part of event sQuery rule 
KB_id    =  ID of the target KB   
UDef     = Event type tuples defined by users 
ETuple   = Event instance tuples defined by UDef
sparq_select  =  Rule predicate used for querying the external KB



11

Pseudocode Example of Category B1

1 stream(CEvents) : −
2    ETuples1 = getEvents(EStream, UDef1),
3    ETuples2 = getEvents(EStream, UDef2),

4    SQuery1 = generateSPARQL(UQuery, ETuples1),
5    SQuery2 = generateSPARQL(UQuery, ETuples2),

6     SResults1 = sparql_select(KB_id, SQuery1),
7     SResults2 = sparql_select(KB_id, SQuery2), 

8     eProcessing(SResults1, SResults2, EStream, EQuery).

CEvents  =  Detected Complex Events    
EStream  =  Raw event stream    
EQuery   =  Event pattern query 
SResult  =  Result set of the SPARQL query
SQuery   =  SPARQL query part of event sQuery rule 
KB_id    =  ID of the target KB   
UDef     = Event type tuples defined by users 
ETuple   = Event instance tuples defined by UDef
sparq_select  =  Rule predicate used for querying the external KB



12

Pseudocode Example of Category B2

1 stream(cEvents):-  
2   ETuples1 = getEvents(EStream, UDef1),
3   SQuery1 = generateSPARQL(UQuery,ETuples1),
4   SResults1 = sparql_select(KB_id,SQuery1),

% Wait until CEvents1 is happened!
5 CEvents1= eProcessing(SResults1, EStream, EQuery), 

6 ETuples2 = getEvents(EStream, UDef2),
7 SQuery2 = generateSPARQL(UQuery,  ETuples2,  8CEvents1),
8 SResults2 = sparql_select(KB_id, SQuery2),

9 eProcessing(SResults2, CEvents2, EStream,  EQuery).

Cevents  =  Detected Complex Events    
EStream  =  Raw event stream    
EQuery   =  Event pattern query 
SResult  =  Result set of the SPARQL query
SQuery   =  SPARQL query part of event sQuery rule 
KB_id    =  ID of the target KB   
UDef     = Event type tuples defined by users 
ETuple   = Event instance tuples defined by UDef
sparq_select  =  Rule predicate used for querying the external KB



13

Example: Implementation in Prova 
rule language (http://prova.ws )

:- eval(server()).

server() :-
  sparqlrule(QueryID),
  rcvMult(XID,Protocol,Sender,event, {url->URL}) [testrule(QueryID, URL)],
  sendMsg(XID, Protocol, Sender, testrule, {url->URL}).

testrule(QueryID, URL) :-
  sparql_results(QueryID, URL, CompanyEmployees), 
  CompanyEmployees > 50000.

sparqlrule(QueryID) :-
    Query = '
        PREFIX DBPPROP: <http://dbpedia.org/property/>
        PREFIX DBPEDIA: <http://dbpedia.org/resource/>

        SELECT ?company ?employees WHERE {
            ?company DBPPROP:industry DBPEDIA:Computer_software .
            ?company DBPPROP:numEmployees ?employees .
            ?company DBPPROP:industry DBPEDIA:Retail . }',

    sparql_select(Query, QueryID, [], 'http://dbpedia.org/sparql').

http://prova.ws/


14

Experiments

Category of sQuery Rules Throughput (Events/s)

A1 (Caching) 280000

A2 2200

A3 1300

B1 , B2, B3  500-4000

Experimental Performance Results on 
Different Query Rule Categories

Installation on two 
machines, both Quad 
Core Intel(R) Xeon(R) 
CPU E31245 @ 3.30GHz 
with 16 GB RAM
Dedicated network 

DBPedia 3.7
Complete Mirror
288 Million RDF triples

Virtuoso Triple Store



15

Conclusion & Outlook

• Semantic Enrichment of Events

• Different categories of event query rules for data 
fusion from external KBs.

Future Work

• Algorithms for efficient processing of events based 
on background knowledge
• Enrichment of events
• Preprocessing
• Planning

AG Corporate Semantic Web
http://www.inf.fu-berlin.de/groups/ag-csw/



Thank you!
http://www.corporate-semantic-web.de

AG Corporate Semantic Web
Freie Universität Berlin

http://www.inf.fu-berlin.de/groups/ag-csw/


	Enabling Knowledge-Based Complex Event Processing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

