
Provenance for
SPARQL queries

Carlos Viegas Damásio (cd@fct.unl.pt)
CENTRIA, Dept. Informática, Univ. Nova de Lisboa, Portugal

Anastasia Analyti (analyti@ics.forth.gr)
Institute of Computer Science, FORTH-ICS, Crete, Greece

Grigoris Antoniou (antoniou@ics.forth.gr)
FORTH-ICS, and Dept. of Computer Science, University of Crete, Crete, Greece

11/14/2012 ISCW 2012, Boston

Overview

   Motivation

   Approach

   Representation using K-relations

   Translation of SPARQL graph patterns

   Related work

   Discussion and Conclusions

The problem
PREFIX dbpowl: <http://dbpedia.org/ontology/>	
	
SELECT DISTINCT ?country WHERE 	
{?place ?label "Lisbon"@en .	
 ?place a dbpowl:PopulatedPlace . 	
 ?place dbpowl:country ?country .	
}	

country
http://dbpedia.org/resource/Portugal
http://dbpedia.org/resource/United_States

The solution with duplicates
PREFIX dbpowl: <http://dbpedia.org/ontology/>	
	
SELECT ?country WHERE 	
{?place ?label "Lisbon"@en .	
 ?place a dbpowl:PopulatedPlace . 	
 ?place dbpowl:country ?country .	
}	

country
http://dbpedia.org/resource/Portugal (14 times)
http://dbpedia.org/resource/United_States (5 times)

Lineage of solution
dbpedia:United States

   The set of all triples that contribute to the solution:

 :Columbiana_County,_Ohio 	 	dbpprop:seatWl	 	"Lisbon"@en .	
:Columbiana_County,_Ohio 	 	rdf:type 	dbpowl:PopulatedPlace .	
:Lisbon,_Illinois 	 	 	 	foaf:name 	"Lisbon"@en .	
:Ransom_County,_North_Dakota 	rdf:type 	dbpowl:PopulatedPlace .	
:Lisbon,_Illinois 	 	 	 	dbpprop:name 	"Lisbon"@en .	
:Ransom_County,_North_Dakota 	dbpprop:largestCityWl 	"Lisbon"@en .	
:Ransom_County,_North_Dakota 	dbpprop:seatWl	"Lisbon"@en .	
:Ransom_County,_North_Dakota 	dbpowl:country	:United_States .	
:Columbiana_County,_Ohio 	 	dbpowl:country	:United_States .	
:Lisbon,_Illinois 	 	 	 	dbpowl:country	:United_States .	
:Lisbon,_Illinois 	 	 	 	rdf:type 	dbpowl:PopulatedPlace .	

Why-provenance
dbpedia:United States
   Which sets of triples support the solution:

 :Columbiana_County,_Ohio 	 	dbpprop:seatWl	 	"Lisbon"@en . 	
:Columbiana_County,_Ohio 	 	rdf:type 	dbpowl:PopulatedPlace .  
:Columbiana_County,_Ohio 	 	dbpowl:country	:United_States .	

:Ransom_County,_North_Dakota 	dbpowl:country:United_States .	
:Ransom_County,_North_Dakota 	dbpprop:seatWl	"Lisbon"@en .	
:Ransom_County,_North_Dakota 	rdf:type 	dbpowl:PopulatedPlace . 	

:Lisbon,_Illinois 	 	 	 	foaf:name 	 	"Lisbon"@en . 	
:Lisbon,_Illinois 	 	 	 	dbpowl:country	:United_States	. 	
:Lisbon,_Illinois 	 	 	 	rdf:type 	dbpowl:PopulatedPlace . 	
:Lisbon,_Illinois 	 	 	 	dbpprop:name 	"Lisbon"@en . 	
:Lisbon,_Illinois 	 	 	 	dbpowl:country	:United_States . 	
:Lisbon,_Illinois 	 	 	 	rdf:type 	dbpowl:PopulatedPlace 	.	

:Ransom_County,_North_Dakota 	dbpprop:largestCityWl "Lisbon"@en .	
:Ransom_County,_North_Dakota 	rdf:type 	dbpowl:PopulatedPlace . 	
:Ransom_County,_North_Dakota 	dbpowl:country:United_States .	

How-provenance
dbpedia:United States
   How is a solution constructed:

 (:Columbiana_County,_Ohio 	dbpprop:seatWl	 	"Lisbon"@en) 	
× (:Columbiana_County,_Ohio 	rdf:type 	dbpowl:PopulatedPlace) 
× (:Columbiana_County,_Ohio 	dbpowl:country	:United_States)	

+ (:Ransom_County,_North_Dakota 	dbpprop:seatWl	"Lisbon"@en)	
× (:Ransom_County,_North_Dakota 	rdf:type 	dbpowl:PopulatedPlace)	
× (:Ransom_County,_North_Dakota dbpowl:country:United_States) 	

+ (:Lisbon,_Illinois 	 	 	foaf:name 	"Lisbon"@en)	
× (:Lisbon,_Illinois 	 	 	rdf:type 	dbpowl:PopulatedPlace) 	
× (:Lisbon,_Illinois 	 	 	dbpowl:country	:United_States) 	
+ (:Lisbon,_Illinois 	 	 	dbpprop:name 	"Lisbon"@en) 	
× (:Lisbon,_Illinois 	 	 	rdf:type 	dbpowl:PopulatedPlace)	
× (:Lisbon,_Illinois 	 	 	dbpowl:country	:United_States) 	

+ (:Ransom_County,_North_Dakota dbpprop:largestCityWl "Lisbon"@en)	
× (:Ransom_County,_North_Dakota 	rdf:type 	dbpowl:PopulatedPlace)	
× (:Ransom_County,_North_Dakota dbpowl:country:United_States) 	

Graph source is important
SPARQL endpoint ?place

•  dbpedia:Columbiana_County,_Ohio
•  dbpedia:Lisbon,_Illinois
•  dbpedia:Ransom_County,_North_Dakota

•  dbpedia:Columbiana_County,_Ohio
•  dbpedia:Lisbon,_Connecticut
•  dbpedia:Lisbon,_Florida
•  dbpedia:Lisbon,_Illinois
•  dbpedia:Lisbon,_Iowa
•  dbpedia:Lisbon,_Juneau_County,_Wisconsin
•  dbpedia:Lisbon,_Maine
•  dbpedia:Lisbon,_New_Hampshire
•  dbpedia:Lisbon,_New_York
•  dbpedia:Lisbon,_North_Dakota
•  dbpedia:Lisbon,_Ohio
•  dbpedia:Lisbon,_Waukesha_County,_Wisconsin
•  dbpedia:Ransom_County,_North_Dakota
•  yago:Lisbon,_Illinois
•  fb:m.0s9cd
•  w-flick:Lisbon,_Illinois

How-provenance for SPARQL

   Previous approaches do not handle how-provenance,
particularly do not respect cardinality of solutions

   Even for why-provenance the existing proposals are
somewhat limited in the treatment of the OPTIONAL
construct, and ignore MINUS, EXISTS and NOT EXISTS

   We take care of the following SPARQL graph patterns:
   Empty graph patterns
   Triple patterns
   AND, UNION, MINUS, OPTIONAL, FILTER and GRAPH

   We do not address aggregations, and property paths

Our approach
   Provenance for Relational Algebra is well-understood and

has fundamental results and techniques that can be employed

   We map SPARQL queries into Relational Algebra queries
over annotated relations (K-relations)

   Tuples of annotated relation are mappings of ordinary tuples
into a commutative semiring K

   In order to be able to handle OPTIONAL and MINUS it is
required to use the (universal) commutative ring Kdprov
supporting difference and duplicate elimination

This was claimed to be impossible !

The universal m-semiring Kdprov

   The commutative semiring Kdprov (X) is formed by elements
constructed inductively:
   The constants 0, and 1

   The set of identifiers X (graph names and quad identifiers)

   The terms (s + t), (s × t), (s – t), δki(t)

   Annotations of Kdprov are elements of the quotient structure
of the free terms above with respect to the congruence
relation induced by the axiomatization of monus-semirings

   This structure obeys to the factorization property, i.e. any
query in a monus-semiring can be evaluated in Kdprov

Query language RA+(-, δ)

   ∅(t) = 0

   (R1 ∪ R2)(t) = R1(t) + R2(t)

   ∏V (R)(t) = ∑{ t[V] = t’[V] } R(t’)

 σP(R)(t) = R(t) if P(t) is true, σP(R)(t) = 0 otherwise

   (R1 ⨝ R2)(t) = R1(t|U1) × R2(t | U2)

   (ρβ(R)(t)) is an annotated relation obtained by renaming the
columns of R according to bijection β

   (R1 - R2)(t) = R1(t) - R2(t)

 δki(R)(t) = ki if R(t) <> 0, δki(R)(t) = 0 otherwise

Mapping of RDF graphs
gid IRI

0 g0

1 http://dbpedia.org g1

2 http://factforge.net g2

gid sub pred obj

0 _:b1 rdfs:label "Lisbon"@en a0

0 _:b1 rdfs:label "Lisboa"@pt a1

1 dbpedia:Lisbon,_Illinois foaf:name "Lisbon"@en b1

1 dbpedia:Lisbon,_Illinois rdf:type dbpedia:PopulatedPlace b2

1 dbpedia:Lisbon,_Illinois dbpowl:country dbpedia:United_States b3

… … … … …

2 dbpedia:Lisbon rdf:type dbpedia:PopulatedPlace c1

… … … … …

Graphs:	

Quads:	

SPARQL solutions
   A solution corresponds to an annotated tuple whose columns

are the query free variables and a special given graph column

G ?place ?country

0 dbpedia:Lisbon,_Illinois dbpedia:United_States g0 × a0 ×
g0 × g1 × b1 × b2× b3

… … …

PREFIX dbpowl: <http://dbpedia.org/ontology/>	
SELECT ?place ?country WHERE	
{ 	[rdfs:label ?search]	
 	GRAPH <http://dbpedia.org> 	

	{ ?place ?label ?search.	
 	 ?place a dbpowl:PopulatedPlace . 	
 ?place dbpowl:country ?country .	

	}	
}	

Empty and triple patterns

Empty graph pattern:

   [()]G selects all rows of
Graphs table renaming
gid by G, and discarding
column IRI:

Triple graph pattern

   [t]G performs a select on
the Quads table

G

0 g0

1 g1

2 g2

[()]G [(?x,rdf:type, dbpedia:PopulatedPlace)]G

G ?x

1 dbpedia:Lisbon,_Illinois b2

… … …

A glimpse of the translation The union operator requires the use of an extended projection in order to
make unbound variables which are present in one pattern but not in the other.
The ordering of the variables in the projection must respect the total order
imposed in the variables. This guarantees that the attributes are the same and
by the same order in the resulting argument expressions of the union operator.

Definition 7 (Translation of the AND pattern). Consider the graph pattern
(P1 AND P2) and let var(P1) ∩ var(P2) = {v1, . . . , vn} (which may be empty).
The relational algebra expression [(P1 AND P2)]

G
R is

ΠG,
var(P1)− var(P2),
var(P2)− var(P1),
v1 ← first(v′

1, v′′
1), . . . ,

vn ← first(v′
n, v′′

n)

σcomp

ρ v′

1 ← v1

...
v′

n ← vn

(
[P1]

G
R

)
!" ρ v′′

1 ← v1

...
v′′

n ← vn

(
[P2]

G
R

)

where comp is a conjunction of conditions v′i = unb ∨ v′′i = unb ∨ v′i = v′′i for
each variable vi(1 ≤ i ≤ n). The function first returns the first argument which
is not unb, or unb if both arguments are unb. Note that if the set of common
variables is empty then the relational algebra expression simplifies to:

ΠG,var(P1)∪var(P2)

[
[P1]

G
R !" [P2]

G
R

]

We need to rename common variables in both arguments, since an unbound
variable is compatible with any bound or unbound value in order to be able to
check compatibility using a selection (it is well-known that the semantics of unb
is different from semantics of NULLs in relational algebra). The use of the first
function in the extended projection is used to obtain in the solution the bound
value of the variable, whenever it exists. This technique is the same with that
used in [6, 11]. The use of the extended projection is not essential, since it can
be translated into a more complex relational algebra query by using an auxiliary
relation containing a tuple for each pair of compatible pairs of variables.

Definition 8 (Translation of the MINUS pattern). Consider the graph pat-
tern (P1 MINUS P2) and let var(P1) ∩ var(P2) = {v1, . . . , vn} (which may be
empty). The relational algebra expression [(P1 MINUS P2)]

G
R is

[P1]
G
R !"

δ
(
[P1]

G
R

)
−ΠG,var(P1)

σcomp∧¬disj

[P1]

G
R !" ρ v′

1 ← v1

...
v′

n ← vn

(
[P2]

G
R

)

where comp is a conjunction of conditions vi = unb∨ v′i = unb∨ vi = v′i for each
variable vi(1 ≤ i ≤ n), and disj is the conjunction of conditions vi = unb∨ v′i =
unb for each variable vi(1 ≤ i ≤ n). Note that if the set of common variables is
empty then the above expression reduces to [P1]

G
R since disj = true.

10

Translation of the graph pattern (P1 AND P2) where {v1, ..., vn}
are the shared variables of patterns P1 and P2.

AND graph patterns
   [(P1 AND P2)]G multiplies together compatible solutions

obtained with [P1]G and [P2]G in the same graph G

[P1]G

[P2]G

G ?x ?y ?w

0 p q - e1

0 p r s e2

1 - - t e3

1 - - u e4

G ?x ?y ?z

0 p q - f1

0 p - v f2

0 p q m f3

1 - - n f4

G ?x ?y ?w ?z

0 p q - - e1 × f1

0 p q - v e1 × f2

0 p q - m e1 × f3

0 p r s v e2 × f2

1 - - t n e3 × f4

1 - - u n e4 × f4

[(P1 AND P2)]G

UNION graph patterns
   [(P1 UNION P2)]G sums together the solutions obtained with

[P1]G and [P2]G in the same graph G.

[P1]G

[P2]G

G ?x ?y ?w

0 p q - e1

0 p r s e2

1 - - t e3

1 - - u e4

G ?x ?y ?z

0 p q - f1

0 p - v f2

0 p q m f3

1 - - n f4

G ?x ?y ?w ?z

0 p q - - e1 + f1

0 p r s - e2

0 p - - v f2

0 p q - m f3

1 - - t - e3

1 - - u - e4

1 - - - n f4

[(P1 UNION P2)]G

MINUS graph patterns
   [(P1 MINUS P2)]G resorts to the difference operator:

[P1]G

[P2]G

G ?x ?y

0 p q e1

0 p r e2

0 r s e3

0 t - e4

G ?y ?z

0 q r f1

0 r t f2

0 r - f3

0 t u f4

G ?x ?y

0 p q e1 × (1- (e1 × f1))

0 p r e2 × (1 –(e2 × f2+e2 × f3))

0 r s e3

0 t - e4

[(P1 MINUS P2)]G

OPTIONAL graph patterns
   [(P1 OPTIONAL P2)]G constructs more complex

annotations also requiring the difference operator:

[P1]G

[P2]G

G ?x ?y

0 p q e1

0 p r e2

0 r s e3

G ?y ?z

0 q r f1

0 r t f2

0 r - f3

0 t u f4

G ?x ?y ?z

0 p q r e1 × f1

0 p q - e1 × (1- (e1 × f1))

0 p r t e2 × f2

0 p r - e2 × f3
+
e2 × (1 –(e2 × f2+e2 × f3))

0 r s - e3

[(P1 OPTIONAL P2)]G

FILTER graph patterns
   If R does not contain [NOT] EXISTS subexpressions then

[(P FILTER R)]G keeps the solutions which satisfy the
boolean condition R, getting the annotation from [(P)]G

   Otherwise, every solution obtained gets the annotation a in
[(P)]G multiplied by:
   (1 – (1 – ei)) for each EXISTS(Pi) in R, where ei is the

annotation for Pi

   (1 – ej) for each NOT EXISTS(Pj) in R, where ej is the
annotation for Pj

   (P1 OPTIONAL (P2 FILTER R)) is translated as usual

GRAPH patterns
   If a specific graph IRI is provided then the annotation

returned by executing the query (GRAPH irij P) in graph
with annotation g has the shape:

 g × gj × [(P)]gj

   When a variable graph identifier is used, then the graph
pattern is evaluated in each named graph resulting in
annotations of the form:

 g × (g1 × [(P)]g1 + ... + gn × [(P)]gn)

   If desired, the graph identifiers can be removed by mapping
them into 1.

Related Work

   Support RDFS reasoning but do not support SPARQL:
   [Flouris et al., ISWC 2009] Coloring RDF triples to capture provenance.

Support RDFS reasoning but no SPARQL.

   [Buneman et al., SWPM 2010] Annotation Algebras for RDFS provide an
algebraic framework for RDFS reasoning. No treatment of SPARQL.

   Support SPARQL:
   [Dividino et al., J. of Web Semantics 2009] Querying for provenance, trust,

uncertainty and other meta knowledge in RDF. Assume a set-based
semantics (no duplicates) – only why-provenance.

   [Zimmermann et al., J. of Web Semantics 2012] Define a SPARQL based
query language for annotated RDFS reasoning, where annotations can be
used in the queries. Sum operator is idempotent, UNION is not evaluated
in the annotation algebra and OPTIONAL occasionally looses some
information. Allow aggregates

   [Geerts et al., unpublished 2012] Propose a novel algebraic structure called
seba (semirings with an embedded boolean) and a full treatment of
SPARQL.

Future work

   Capture remaining constructs of SPARQL:
 Aggregation

 Property paths

   Relate with explicit provenance models

   Explore relationships to the recent work of [Geerts et al,
2012]

 Test in practice the approach with real data and real queries

 Complexity of generated annotations

Conclusions and future work

   A first proposal for extracting how-provenance for a very
significant fragment of the SPARQL recommendation,
respecting the cardinality of solutions

   Uses established provenance models from the database
community

   Annotations can be complex, requiring extra research on
practical ways to deal with them

