Provenance for SPARQL queries

Carlos Viegas Damásio (cd@fct.unl.pt) CENTRIA, Dept. Informática, Univ. Nova de Lisboa, Portugal

Anastasia Analyti (analyti@ics.forth.gr) Institute of Computer Science, FORTH-ICS, Crete, Greece

Grigoris Antoniou (antoniou@ics.forth.gr) FORTH-ICS, and Dept. of Computer Science, University of Crete, Crete, Greece

Overview

© Motivation
© Approach
(2) Representation using K-relations
© Translation of SPARQL graph patterns
© Related work
© Discussion and Conclusions

The problem

PREFIX dbpowl: http://dbpedia.org/ontology/
SELECT DISTINCT ?country WHERE
\{?place ?label "Lisbon"@en . ?place a dbpowl:PopulatedPlace. ?place dbpowl:country ?country .
\}
country
http://dbpedia.org/resource/Portugal http://dbpedia.org/resource/United_States

The solution with duplicates

PREFIX dbpowl: http://dbpedia.org/ontology/

SELECT ?country WHERE
\{?place ?label "Lisbon"@en .
?place a dbpowl:PopulatedPlace
?place dbpowl:country ?country
\}

```
country
http://dbpedia.org/resource/Portugal (14 times)
http://dbpedia.org/resource/United_States (5 times)
```


Lineage of solution dbpedia:United States

® The set of all triples that contribute to the solution:
: Columbiana_County,_Ohio
: Columbiana_County,_Ohio
: Lisbon,_Illinois
:Ransom_County,_North_Dakota
: Lisbon,_Illinois
:Ransom_County,_North_Dakota
: Ransom_County,_North_Dakota
: Ransom_County,_North_Dakota
: Columbiana_County,_Ohio
:Lisbon,_Illinois
:Lisbon,_Illinois
dbpprop:seatWl
"Lisbon"@en rdf:type dbpowl:PopulatedPlace . foaf:name "Lisbon"@en . rdf:type
dbpowl:PopulatedPlace dbpprop:name "Lisbon"@en dbpprop:largestCityWL "Lisbon"@en .
dbpprop:seatWL "Lisbon"@en .
dbpowl: country :United_States dbpowl:country :United_States dbpowl:country :United_States . rdf:type dbpowl:PopulatedPlace .

Why-provenance dbpedia:United States

\& Which sets of triples support the solution:
: Columbiana_County,_Ohio
:Columbiana_County,_Ohio
: Columbiana_County,_Ohio
:Lisbon,_Illinois
:Lisbon,_Illinois
:Lisbon,_Illinois
:Lisbon,_Illinois
:Lisbon,_Illinois
:Lisbon,_Illinois
:Ransom_County,_North_Dakota
:Ransom_County,_North_Dakota
:Ransom_County,_North_Dakota
:Ransom_County,_North_Dakota
:Ransom_County,_North_Dakota
:Ransom_County,_North_Dakota
dbpprop:seatWL
"Lisbon"@en rdf:type dbpowl:PopulatedPlace dbpowl: country :United_States .
foaf:name "Lisbon"@en . dbpowl:country :United_States rdf:type dbpowl:PopulatedPlace . dbpprop:name "Lisbon"@en .
dbpowl: country :United_States . rdf:type dbpowl:PopulatedPlace dbpowl:country:United_States . dbpprop:seatWL "Lisbon"@en rdf:type dbpowl:PopulatedPlace dbpprop:largestCityWl "Lisbon"@en rdf:type dbpowl:PopulatedPlace . dbpowl:country:United_States .

How-provenance dbpedia:United States

© How is a solution constructed:
(:Columbiana_County,_Ohio x (:Columbiana_County,_Ohio
x (:Columbiana_County,_Ohio

+ (:Lisbon,_Illinois
\times (:Lisbon, _Illinois
\times (:Lisbon,_Illinois
+ (:Lisbon,_Illinois
\times (:Lisbon,_Illinois
\times (:Lisbon,_Illinois
+ (:Ransom_County,_North_Dakota dbpprop:seatWl "Lisbon"@en) x (:Ransom_County,_North_Dakota rdf:type dbpowl:PopulatedPlace)
x (:Ransom_County,_North_Dakota dbpowl:country:United_States)
+ (:Ransom_County,_North_Dakota dbpprop:largestCityWl "Lisbon"@en) x (:Ransom_County,_North_Dakota rdf:type dbpowl:PopulatedPlace)
x (:Ransom_County,_North_Dakota dbpowl:country:United_States)

Graph source is important

SPARQL endpoint

?place

DBpedia

- dbpedia:Columbiana_County,_Ohio
- dbpedia:Lisbon,_Illinois
- dbpedia:Ransom_County,_North_Dakota
- dbpedia:Columbiana_County,_Ohio
- dbpedia:Lisbon,_Connecticut
- dbpedia:Lisbon,_Florida
- dbpedia:Lisbon,_Illinois
- dbpedia:Lisbon,_Iowa
- dbpedia:Lisbon,_Juneau_County,_Wisconsin
- dbpedia:Lisbon,_Maine
- dbpedia:Lisbon,_New_Hampshire

FactForge

- dbpedia:Lisbon,_New_York
- dbpedia:Lisbon,_North_Dakota
- dbpedia:Lisbon,_Ohio
- dbpedia:Lisbon,_Waukesha_County,_Wisconsin
- dbpedia:Ransom_County,_North_Dakota
- yago:Lisbon,_Illinois
- fb:m.0s9cd
- w-flick:Lisbon,_Illinois

How-provenance for SPARQL

* Previous approaches do not handle how-provenance, particularly do not respect cardinality of solutions
© Even for why-provenance the existing proposals are somewhat limited in the treatment of the OPTIONAL construct, and ignore MINUS, EXISTS and NOT EXISTS
(2) We take care of the following SPARQL graph patterns:
\odot Empty graph patterns
© Triple patterns
® AND, UNION, MINUS, OPTIONAL, FILTER and GRAPH
© We do not address aggregations, and property paths

Our approach

© Provenance for Relational Algebra is well-understood and has fundamental results and techniques that can be employed
© We map SPARQL queries into Relational Algebra queries over annotated relations (\mathcal{K}-relations)

* Tuples of annotated relation are mappings of ordinary tuples into a commutative semiring \mathcal{K}
\& In order to be able to handle OPTIONAL and MINUS it is required to use the (universal) commutative ring $\mathcal{K}_{\text {dprov }}$ supporting difference and duplicate elimination

This was claimed to be impossible !

The universal m-semiring $\mathcal{K}_{\text {dprov }}$

(2) The commutative semiring $\mathcal{K}_{\text {dprov }}(\mathrm{X})$ is formed by elements constructed inductively:
© The constants 0 , and 1

* The set of identifiers X (graph names and quad identifiers)
\otimes The terms $(\mathrm{s}+\mathrm{t}),(\mathrm{s} \times \mathrm{t}),(\mathrm{s}-\mathrm{t}), \delta_{\mathrm{ki}}(\mathrm{t})$
(18) Annotations of $\mathcal{K}_{\text {dprov }}$ are elements of the quotient structure of the free terms above with respect to the congruence relation induced by the axiomatization of monus-semirings
(2) This structure obeys to the factorization property, i.e. any query in a monus-semiring can be evaluated in $\mathcal{K}_{\text {dprov }}$

Query language $\operatorname{RA}^{+}(-, \delta)$

$\otimes \varnothing(\mathrm{t})=0$
$\otimes\left(\mathrm{R}_{1} \cup \mathrm{R}_{2}\right)(\mathrm{t})=\mathrm{R}_{1}(\mathrm{t})+\mathrm{R}_{2}(\mathrm{t})$
© $\Pi_{\mathrm{V}}(\mathrm{R})(\mathrm{t})=\sum_{\{\mathrm{t}[\mathrm{V}]=\mathrm{t}[\mathrm{V}]\}} \mathrm{R}\left(\mathrm{t}^{\prime}\right)$
$\otimes \sigma_{\mathrm{P}}(\mathrm{R})(\mathrm{t})=\mathrm{R}(\mathrm{t})$ if $\mathrm{P}(\mathrm{t})$ is true, $\sigma_{\mathrm{P}}(\mathrm{R})(\mathrm{t})=0$ otherwise
© $\left(\mathrm{R}_{1} \bowtie \mathrm{R}_{2}\right)(\mathrm{t})=\mathrm{R}_{1}\left(\mathrm{t} \mid \mathrm{U}_{1}\right) \times \mathrm{R}_{2}\left(\mathrm{t} \mid \mathrm{U}_{2}\right)$
$\otimes\left(\rho_{\beta}(\mathrm{R})(\mathrm{t})\right)$ is an annotated relation obtained by renaming the columns of R according to bijection β
$\otimes\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)(\mathrm{t})=\mathrm{R}_{1}(\mathrm{t})-\mathrm{R}_{2}(\mathrm{t})$
(8) $\delta_{\mathrm{ki}}(\mathrm{R})(\mathrm{t})=\mathrm{k}_{\mathrm{i}}$ if $\mathrm{R}(\mathrm{t})<>0, \delta_{\mathrm{ki}}(\mathrm{R})(\mathrm{t})=0$ otherwise

Mapping of RDF graphs

Graphs: \begin{tabular}{|l|l|l|}
\hline gid \& IRI \&

0		$g 0$
1	http://dbpedia.org	$g 1$
2	http://factforge.net	$g 2$

\end{tabular}

Quads:

gid	sub	pred	obj	
0	_:b1	rdfs:label	"Lisbon"@en	$a 0$
0	_b1	rdfs:label	"Lisboa"@pt	$a 1$
1	dbpedia:Lisbon,_Illinois	foaf:name	"Lisbon"@en	$b 1$
1	dbpedia:Lisbon,_Illinois	rdf:type	dbpedia:PopulatedPlace	$b 2$
1	dbpedia:Lisbon,_Illinois	dbpowl:country	dbpedia:United_States	$b 3$
\vdots	\vdots	\vdots	\vdots	\vdots
2	dbpedia:Lisbon	rdf:type	dbpedia:PopulatedPlace	$c 1$
\vdots	\vdots	\vdots	\vdots	\vdots

SPARQL solutions

© A solution corresponds to an annotated tuple whose columns are the query free variables and a special given graph column

PREFIX dbpowl: http://dbpedia.org/ontology/
SELECT ?place ?country WHERE
\{ [rdfs:label ?search]
GRAPH http://dbpedia.org
\{ ?place ?label ?search.
?place a dbpowl:PopulatedPlace .
?place dbpowl:country ?country .
\}
\}

G	?place	?country	
0	dbpedia:Lisbon,_Illinois	dbpedia:United_States	$g 0 \times a 0 \times$ $g 0 \times g 1 \times b 1 \times b 2 \times b 3$ $\vdots$$\vdots$

Empty and triple patterns

Empty graph pattern:

$\oplus[0]^{\mathrm{G}}$ selects all rows of Graphs table renaming gid by G , and discarding column IRI:
$[0]^{\text {G }}$

\mathbf{G}	
0	$g 0$
1	$g 1$
2	$g 2$

Triple graph pattern

* $[t]^{\mathrm{G}}$ performs a select on the Quads table
[(?x,rdf:type, dbpedia:PopulatedPlace)] ${ }^{\text {G }}$

A glimpse of the translation

Translation of the graph pattern (P1 AND P2) where $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ are the shared variables of patterns P1 and P2.

$$
\begin{aligned}
& \Pi_{G}, \\
& \operatorname{var}\left(P_{1}\right)-\operatorname{var}\left(P_{2}\right), \\
& \operatorname{var}\left(P_{2}\right)-\operatorname{var}\left(P_{1}\right) \text {, } \\
& \begin{array}{l}
v_{1} \leftarrow \operatorname{first}\left(v_{1}^{\prime}, v_{1}^{\prime \prime}\right), \\
v_{n} \leftarrow \operatorname{first}\left(v_{n}^{\prime}, v_{n}^{\prime \prime}\right)
\end{array}
\end{aligned}
$$

AND graph patterns

® $\left[(\mathrm{P} 1 \text { AND P2) }]^{\mathrm{G}}\right.$ multiplies together compatible solutions obtained with $[\mathrm{P} 1]^{\mathrm{G}}$ and $[\mathrm{P} 2]^{\mathrm{G}}$ in the same graph G

[(P1 AND P2)] ${ }^{\mathrm{G}}$

\mathbf{G}	$?_{\mathrm{x}}$	$?_{\mathrm{y}}$	$?_{\mathrm{w}}$	$?_{\mathrm{z}}$	
0	p	q	-	-	$e 1 \times f 1$
0	p	q	-	v	$e 1 \times f 2$
0	p	q	-	m	$e 1 \times f 3$
0	p	r	s	v	$e 2 \times f 2$
1	-	-	t	n	$e 3 \times f 4$
1	-	-	u	n	$e 4 \times f 4$

UNION graph patterns

\& [(P1 UNION P2) $]^{\mathrm{G}}$ sums together the solutions obtained with $[\mathrm{P} 1]^{\mathrm{G}}$ and $[\mathrm{P} 2]^{\mathrm{G}}$ in the same graph G .

[(P1 UNION P2)] ${ }^{\mathrm{G}}$

G	$? \mathrm{x}$	$? \mathrm{y}$	$? \mathbf{w}$	$? \mathrm{z}$	
0	p	q	-	-	$e 1+f 1$
0	p	r	s	-	$e 2$
0	p	-	-	v	$f 2$
0	p	q	-	m	$f 3$
1	-	-	t	-	$e 3$
1	-	-	u	-	$e 4$
1	-	-	-	n	$f 4$

MINUS graph patterns

* $\left[(\mathrm{P} 1 \text { MINUS P2) }]^{\mathrm{G}}\right.$ resorts to the difference operator:

G	?x	?y	
0	p	q	e1
0	p	r	e2
0	r	s	e3
0	t	-	e4

$\left[(\text { P1 MINUS P2) }]^{G}\right.$

G	$? \mathrm{x}$	$? \mathrm{y}$	
0	p	q	$e 1 \times(1-(e 1 \times f 1))$
0	p	r	$e 2 \times(1-(e 2 \times f 2+e 2 \times f 3))$
0	r	s	$e 3$
0	t	-	$e 4$

$\left[^{\mathrm{P}} \mathrm{P}^{\mathrm{G}}\right.$	G	$?_{\mathrm{y}}$	$?_{\mathrm{z}}$	
	0	q	r	$f 1$
	0	r	t	$f 2$
	0	r	-	$f 3$
	0	t	u	$f 4$

OPTIONAL graph patterns

* $\left[(\mathrm{P} 1 \text { OPTIONAL P2) }]^{\mathrm{G}}\right.$ constructs more complex annotations also requiring the difference operator:

FILTER graph patterns

® If R does not contain [NOT] EXISTS subexpressions then $\left[^{(P ~ F I L T E R ~ R)}\right]^{G}$ keeps the solutions which satisfy the boolean condition R, getting the annotation from $[(P)]^{G}$
(1) Otherwise, every solution obtained gets the annotation a in $[(\mathrm{P})]^{G}$ multiplied by:
© (1-(1-e $))$ for each $\operatorname{EXISTS}\left(\mathrm{P}_{\mathrm{i}}\right)$ in R , where e_{i} is the annotation for P_{i}

* $\left(1-e_{j}\right)$ for each NOT EXISTS $\left(\mathrm{P}_{\mathrm{j}}\right)$ in R , where e_{j} is the annotation for P_{j}
© (P1 OPTIONAL (P2 FILTER R)) is translated as usual

GRAPH patterns

* If a specific graph IRI is provided then the annotation returned by executing the query (GRAPH irij P) in graph with annotation g has the shape:

$$
g \times g_{j} \times[(P)]^{g j}
$$

* When a variable graph identifier is used, then the graph pattern is evaluated in each named graph resulting in annotations of the form:

$$
\mathrm{g} \times\left(\mathrm{g}_{1} \times[(\mathrm{P})]^{\mathrm{g} 1}+\ldots+\mathrm{g}_{\mathrm{n}} \times[(\mathrm{P})]^{\mathrm{gn}}\right)
$$

(2) If desired, the graph identifiers can be removed by mapping them into 1.

Related Work

\otimes Support RDFS reasoning but do not support SPAROL:
\oplus [Flouris et al., ISWC 2009] Coloring RDF triples to capture provenance. Support RDFS reasoning but no SPAROL.

* [Buneman et al., SWPM 2010] Annotation Algebras for RDFS provide an algebraic framework for RDFS reasoning. No treatment of SPAROL.
- Support SPARQL:
* [Dividino et al., J. of Web Semantics 2009] Querying for provenance, trust, uncertainty and other meta knowledge in RDF. Assume a set-based semantics (no duplicates) - only why-provenance.
* [Zimmermann et al., J. of Web Semantics 2012] Define a SPARQL based query language for annotated RDFS reasoning, where annotations can be used in the queries. Sum operator is idempotent, UNION is not evaluated in the annotation algebra and OPTIONAL occasionally looses some information. Allow aggregates
\circledast [Geerts et al., unpublished 2012] Propose a novel algebraic structure called seba (semirings with an embedded boolean) and a full treatment of SPARQL.

Future work

* Capture remaining constructs of SPARQL:
\otimes Aggregation
\oplus Property paths
© Relate with explicit provenance models
® Explore relationships to the recent work of [Geerts et al, 2012]
® Test in practice the approach with real data and real queries
® Complexity of generated annotations

Conclusions and future work

\circledast A first proposal for extracting how-provenance for a very significant fragment of the SPARQL recommendation, respecting the cardinality of solutions
(2) Uses established provenance models from the database community
(2) Annotations can be complex, requiring extra research on practical ways to deal with them

