Extension of the Semantic Sensor Network Ontology for Wireless Sensor Network: The Stimulus - WSNnode -Communication Pattern

Rimel BENDADOUCHE, Catherine ROUSSEY, Gil DE SOUSA, Jean Pierre CHANET and Kun Mean HOU

Pour mieux affirmer ses missions, le Cemagref devient Irstea

Wireless Sensor Network (WSN)

Definition:

collection of WSN nodes connected to one or more gateways

Characteristics:

- large-scale deployment
- limited resources
 - Energy
 - CPU
 - memory

SSN'12

Outlines

- Wireless Sensor Network (WSN), needs and objectives
- State of the art on sensor ontologies
- Semantic Sensor Network (SSN) ontology overview
- Wireless Semantic Sensor Network (WSSN) Ontology: extension of the SSN ontology
- Use of the WSSN ontology

SSN'12

Wireless Sensor Network (WSN) NEEDS AND OBJECTIVES

Adapt the WSN node behavior to the context:

- Node state
- Phenomena state

Context: "The context is a set of entities states or information describing an environment where an event occurs"

State: "The state is a qualitative data, which changes over time summarizing a set of information"

SSN'12

Enhance the lifetime and the good functioning of the network

What is a context ? FLOOD PHENOMENA

FLOOD PHENOMENA STATE:

- 1. "Normal"
- 2. "Waiting for rise in water levels"
- 3. "Rise in water levels"
- 4. "Flood warning"

NODE (ENERGY) STATE:

- 1. Strong Energy state
- 2. Average Energy state
- 3. Low Energy state

Wireless Sensor Network (WSN)

Phenomena state Normal

Ontologies

Definition:

- "explicit specification of a conceptualization" (Gruber, 1993)
- "explicit specification of a shared formal conceptualization" (Studer et al., 1998)
- Objectives:
 - normalize the vocabulary
 - defined the messages formats

SSN'12

Ontology goals DESCRIPTION OF

- WSN and their devices
- Observation process
- Communication process
- Data stream
 - Acquisitional Data Stream
 - Communication Data Stream

12/11/2012

SSN'12

• Context = Set of entity's state

Sensor Ontologies

- 1. Semantic Sensor Network ontology (SSN), 2010
- 2. Coastal Environmental Sensor Networks (CESN) ontology (Calder et al., 2010)
- 3. CSIRO Sensor Ontology, (Compton et al., 2009)
- 4. Stimuli-centered (Stasch et al., 2009)

SSN'12

12/11/2012

5. OOSTethys (Bermudez et al., 2009)

- 6. MMI (Marine Metadata Interoperability)
- Sensor Web for Autonomous Mission Operations (SWAMO) ontology, 2008
- SEEK Extensible Observation Ontology (OBOE) (Madin et al., 2007)
- 9. Sensor Data Ontology (SDO) (Eid et al., 2007)
- 10. OntoSensor (Russomanno et al., 2005)

Analysis of the developed topics 3 TOPICS

SSN'12

12/11/2012

- Sensor: the sensor and its components (Compton et al., 2009)
- Observation: the measurement process (Compton et al., 2009)
- A Data: processes using data like aggregation or communication processes

irs

Analysis of the topics

	Sensor						Observation						Data				
Ontologies	Sensor	Sensor type	Components	Deployment	Configuration	Action & process	Observation	Reponse model	Measurement	Accuracy	Frequency	Field of view/sensing	Data	Data stream	Data Stream acquisition politic	Data stream communication politic	Domain
SSN	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*
CESN	*			*			*						*				*
CSIRO	*	*	*	*	*	*	*	*	*	*	*	*	*		*		*
Sensei O&M							*						*				
OOSTethys			*			*	*						*				*
MMI	*		*	*	*	*				*	*				*		*
SWAMO	*		*			*						*					*
SEEK							*		*				*				
SDO	*	*			*		*	*	*	*	*	*	*		*		*
SeReS O&M					*	*	*	*					*				
OntoSensor	*	*	*		*	*	*	*	*	*	*	*	*		*		*

SSN ontology (Compton et al., 2012)

Our needs...

- WSN and their devices
- Observation process
- Communication process
- Data stream
 - Acquisitional Data Stream
 - Communication Data Stream
- Context = Set of entity's state

Communication: Stimulus-WSNnode-Communication pattern

Communication process

SS

12/11/

irste

Communication data stream

The use of the WSSN ontology SIMULATED SCENARIO

- In an agri-environnemental scenario...
 - Flood monitoring in watersheds
 - Description of WSN: two «weather» nodes: sensor of the precipitations quantity (pluviometer) Decision Support System (DSS)

SSN'12

The use of the WSSN ontology IMPLEMENTATION OF THE SCENARIO

The default settings of the two nodes

- Each node has an energy device: 240 transmitting packets
- Acquisition and the communication frequencies are equal: one communication per 1 hour
- Node 2 adapts its behavior to its context

SSN'12

The use of the WSSN ontology IMPLEMENTATION OF THE SCENARIO

- "Strong Energy state", when the current amount of transmitted packets performed by the node is under 120 packets
- "Average Energy state", when the current amount of transmitted packets is between 120 and 180 packets
- "Low Energy state", when the current amount of transmitted packets performed by the node is above 180 packets

SSN'12

The use of the WSSN ontology IMPLEMENTATION OF THE SCENARIO

Depending of its state, the node 2 changes its communication frequency:

- "Strong Energy state": one communication per 1 hour
- "Average Energy state": one communication per 2 hours
- "Low Energy state": one communication per 4 hours

SSN'12

The use of the WSSN ontology USING TOOLS

- Model the WSN and its nodes
 - JADE Simulator (Bendadouche et al. 2012)
- Develop the WSSN ontology
 - Protégé (BeanGenerator plugin)

protégé

• .

•

-

File Edit Project Window Tools Hel

created ontology file: /home/chri created file: CD.java

status

added slots

String title skipping :CLASS created file: Track java

added slots

int duration

online here

int serialD created file: Sell.java added slots:

added slots:

String name

created file: Item java

String creditCardNumbe

skipping :CLASS

skipping :CLASS created file: Owns java

skipping :CLASS

skipping :CLASS

🔸 Classes 🛛 💻 Slots 🔰 🛢 Forms 🖌 🔶 Instances 🖌 📥 Queries 🛛 🐶 Ontology Bean Generator

A home/chris/projects/acklin/musicshop/src

example

public class CD implements Concept &

public void setPrice(int value) {

private int price;

this.price=value

lic int cetPrice(

ni.acklin.musicshop

Musicshop

Ontology Bean Generator for Jade 3.1

oackagename (e.g. mypackage onto)

location excl. package (e.g. /home/chris/projects/myproject/src/ This directory will be created if it doesn't already exist

ontologydomain (e.g. Newspaper

Generate Beans

generate jade ontology file

use JADE names when specifier

J2SE JavaBean compatible [JADE]

J2SE and Java 1.1 compatible [JADE, JADE-LEAP] J2ME compatible [JADE-LEAP]

IADE

generate beans

Simulation Result

COMPARING THE LIFETIME OF THE TWO "WEATHER" NODES

Conclusion

- SNN is the ontology that describes most of topics that a sensor ontology must describe
- No ontology is able to characterize the communication data policy
- Propose a new ontology design pattern called Stimulus-WSNnode-Communication (SWC)
- Enrich the SSN ontology using SWC pattern with WSN concepts, Wireless Semantic Sensor Network ontology (WSSN)

SSN'12

- irstea
- Simulate on JADE a simple scenario which illustrate the interest of our contextual approach based on ontologies

Perspectives

- Enrich our ontology in order to point out the difference between the communicated data and the acquired one
- Model the knowledge used in rules engines
- Simulate on JADE a complete scenario for the flood monitoring in a watershed
- Implement on physical WSN nodes our approach and make more complex experiments

SSN'12

THANK YOU...