

RDFS Reasoning on Massively Parallel Hardware Norman Heino, Jeff Z. Pan

University of Leipzig, Germany AKSW Research Group University of Aberdeen, United Kingdom Dept. of Computing Science

RDFS reasoning

- Interpreting RDFS vocabulary can give rise to new triples
- Model-theoretic semantic conditions from RDF semantics document
- Incomplete set of rules
 - we use subset with exactly two antecedents

<pre>(5) p rdfs:subPropertyOf a (11) C rdfs:subClassOf D</pre>	<pre>q & q rdfs:subPropertyOf r & D rdfs:subClassOf E</pre>	$r \implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
(2) <i>s p o</i>	& p rdfs:domain D	\implies s rdf:type D
(3) <i>s p o</i>	& $p \text{ rdfs:range } R$	$\implies o \text{ rdf:type } R$
(7) <i>s p o</i>	& p rdfs:subPropertyOf a	$q \Longrightarrow s q o$
(9) srdf:type B	& <i>B</i> rdfs:subClassOf <i>C</i>	\implies s rdf:type C

RDFS reasoning

(5) (11)	<pre>p rdfs:subPropertyOf q C rdfs:subClassOf D</pre>	<pre>& q rdfs:subPropertyOf r & D rdfs:subClassOf E</pre>	$\implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
(2)	s p o	& p rdfs:domain D	\implies s rdf:type D
(3)	s p o	& <i>p</i> rdfs:range <i>R</i>	$\implies o \operatorname{rdf:type} R$
(7)	s p o	& p rdfs:subPropertyOf q	$s \Longrightarrow s q o$
(9)	srdf:type B	& <i>B</i> rdfs:subClassOf <i>C</i>	\implies s rdf:type C

(5) (11)	<pre>p rdfs:subPropertyOf q C rdfs:subClassOf D</pre>	& q rdfs:subPropertyOf r & D rdfs:subClassOf E	$\implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
(2)	s p o	& p rdfs:domain D	\implies s rdf:type D
(3)	s p o	& p rdfs:range R	$\implies o \text{ rdf:type } R$
(7)	s p o	& $p \text{ rdfs:subPropertyOf } q$	$s \Longrightarrow s q o$
(9)	srdf:type B	& <i>B</i> rdfs:subClassOf <i>C</i>	\implies s rdf:type C

(5)	<pre>p rdfs:subPropertyOf q C rdfs:subClassOf D</pre>	& q rdfs:subPropertyOf r	$\implies p \text{ rdfs:subPropertyOf } r$
(11)		& D rdfs:subClassOf E	$\implies C \text{ rdfs:subClassOf } E$
(2)	spo	& <i>p</i> rdfs:domain <i>D</i>	\implies s rdf:type D
(3)	spo	& <i>p</i> rdfs:range <i>R</i>	\implies o rdf:type R
(7)	s p o	& p rdfs:subPropertyOf q	$y \Longrightarrow s q o$
(9)	s rdf:type B	& B rdfs:subClassOf C	$\implies s rdf:type C$

• No rules with ,trivial' entailments

(5) (11)	<pre>p rdfs:subPropertyOf q C rdfs:subClassOf D</pre>	& q rdfs:subPropertyOf r & D rdfs:subClassOf E	$\implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
(2)	s p o	& p rdfs:domain D	\implies s rdf:type D
(3)	s p o	& <i>p</i> rdfs:range <i>R</i>	$\implies o \ rdf:type R$
(7)	s p o	& p rdfs:subPropertyOf q	$q \Longrightarrow s q o$
(9)	srdf:type B	& <i>B</i> rdfs:subClassOf <i>C</i>	\implies s rdf:type C

- No rules with ,trivial' entailments
- Ignore non-authorative statements

(5) (11)	<pre>p rdfs:subPropertyOf q C rdfs:subClassOf D</pre>	& q rdfs:subPropertyOf r & D rdfs:subClassOf E	$\implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
(2)	s p o	& p rdfs:domain D	\implies s rdf:type D
(3)	s p o	& p rdfs:range R	$\implies o \text{ rdf:type } R$
(7)	s p o	& p rdfs:subPropertyOf q	$q \Longrightarrow s q o$
(9)	srdf:type B	& <i>B</i> rdfs:subClassOf <i>C</i>	\implies s rdf:type C

- No rules with ,trivial' entailments
- Ignore non-authorative statements
- Results obtained w/o axiomatic triples

Special cases

(7)-1	s langProp ₁ o	&	$langProp_1 rdfs:subPropertyOf langProp_2$	\implies	s langProp ₂ o
(7)-2	s langProp o	&	langProp rdfs:subPropertyOf q	\implies	sqo
(7)-3	s p o	&	<pre>p rdfs:subPropertyOf langProp</pre>	\implies	s langProp o
(7)-4	sqo	&	$p \ rdfs:subPropertyOf q$	\implies	sqo

Special cases

(7) 1	alangDron	Q.	lang Dron ndfereuh Dronantu Of lang Dron		alangDron
	5 mil Si Topi o	~			5 migi 10p2 0
(7)	a lang Dron o	Ø.,	lang Dron ndfe Leuh Dronantur Of a		
(') =	s range top o	ũ			590
(7)-3	s n o	&	<i>n</i> rdfs:subPropertvOflangProp	\implies	s langProp o
(1) \mathbf{S}	s p c	$\boldsymbol{\omega}$	p ruibibubi roper eyer angriop	,	s lungi rop o
(7)-4	S a a	&	<i>n</i> rdfs:subPropertvOf <i>a</i>	\implies	S a a
(') '	590	<i>cc</i>			590

- Cluster-based approaches
 - MapReduce Urbani et al. (2009)
 - DHT Kaoudi et al. (2008)
 - Peer network Weaver and Hendler et al. (2009)

- Cluster-based approaches
 - MapReduce Urbani et al. (2009)
 - DHT Kaoudi et al. (2008)
 - Peer network Weaver and Hendler et al. (2009)
- HPC Implementation
 - Cray XMT Goodman and Mizell (2010)

- Cluster-based approaches
 - MapReduce Urbani et al. (2009)
 - DHT Kaoudi et al. (2008)
 - Peer network Weaver and Hendler et al. (2009)
- HPC Implementation
 - Cray XMT Goodman and Mizell (2010)

Our platform: single host, massively parallel commodity hardware with shared memory

Challenge: develop algorithm that allows for fine-grained parallelism

OpenCL

- Vendor-agnostic model and API for heterogenous parallel computation
- Khronos standard
- GPU, CPU, accellerators (Cell, DSPs)
- Host program controls submission of compute kernels and data to hardware
- Compute kernels written in C99 subset

OpenCL memory model

1. Parsing

- 1. Parsing
- 2. Dictionary encoding

- 1. Parsing
- 2. Dictionary encoding
- 3. In-memory storage
 - one std::vector per column
 - indexed by *hash*(triple)

- 1. Parsing
- 2. Dictionary encoding
- 3. In-memory storage
 - one std::vector per column
 - indexed by *hash*(triple)
- 4. Copying data to device (PCIe bus)

- 1. Parsing
- 2. Dictionary encoding
- 3. In-memory storage
 - one std::vector per column
 - indexed by *hash*(triple)
- 4. Copying data to device (PCIe bus)
- 5. Rule application on device

- 1. Parsing
- 2. Dictionary encoding
- 3. In-memory storage
 - one std::vector per column
 - indexed by *hash*(triple)
- 4. Copying data to device (PCIe bus)
- 5. Rule application on device
- 6. Copying back, storing results

Rule implementation

Could produce schema triples

Independent of (2), could be run in parallel

(5)	<pre>p rdfs:subPropertyOf q C rdfs:subClassOf D</pre>	<pre>q & q rdfs:subPropertyOf r</pre>	p rdfs:subPropertyOf r
(11)		& D rdfs:subClassOf E	$\implies C \text{ rdfs:subClassOf } E$
(2)	spo	& <i>p</i> rdfs:domain <i>D</i>	$\implies s \text{ rdf:type } D$ $\implies o \text{ rdf:type } R$
(3)	spo	& <i>p</i> rdfs:range <i>R</i>	
(7) (9)	s p o s rdf:type B	<pre>& p rdfs:subPropertyOf q & B rdfs:subClassOf C</pre>	$q \Longrightarrow s \ q \ o$ $\implies s \ rdf:type \ C$

TC-based rules

- Transitive property hierachies have a sparse adjacency matrix
 - Quadratic algorithm (Warshall) is infeasible
- Host-run serial implementation based on work by Nuutila

Join rules

- Join instance triple with schema subject
 - counting results
 - computing index
- Materialize result triples in two passes

@base <http://example.com/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

rdfs:domain <C> .

<r> rdfs:domain <D> .

rdfs:subPropertyOf <r> .

<C> rdfs:subClassOf <D> .

<A> "01", "02", "03" .

(5)	<pre>p rdfs:subPropertyOf q</pre>	& q rdfs:subPropertyOf r	$\implies p \text{ rdfs:subPropertyOf } r$
(11)	<i>C</i> rdfs:subClassOf <i>D</i>	& <i>D</i> rdfs:subClassOf <i>E</i>	$\Longrightarrow C rdfs:subClassOf E$
(2)	s p o	& p rdfs:domain D	\implies s rdf:type D
(3)	s p o	& $p \text{ rdfs:range } R$	$\implies o \operatorname{rdf:type} R$
(7)	s p o	& p rdfs:subPropertyOf q	$s \Longrightarrow s q o$
(9)	srdf:type B	& <i>B</i> rdfs:subClassOf <i>C</i>	\implies s rdf:type C

1

@base <http://example.com/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

rdfs:domain <C> .

<r> rdfs:domain <D> .

rdfs:subPropertyOf <r> .

<C> rdfs:subClassOf <D> .

<A> "01", "02", "03" .

<pre>(5) p rdfs:subPropertyOf a (11) C rdfs:subClassOf D</pre>	<pre>q & q rdfs:subPropertyOf r & D rdfs:subClassOf E</pre>	$r \implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
 (2) s p o (3) s p o (7) s p o (9) s rdf:type B 	<pre>& p rdfs:domain D & p rdfs:range R & p rdfs:subPropertyOf a & B rdfs:subClassOf C</pre>	$\implies s \operatorname{rdf:type} D$ $\implies o \operatorname{rdf:type} R$ $q \implies s q o$ $\implies s \operatorname{rdf:type} C$

1

@base <http://example.com/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

rdfs:domain <C> .

<r> rdfs:domain <D> .

rdfs:subPropertyOf <r> .

<C> rdfs:subClassOf <D> .

<A> "01", "02", "03" .

<pre>(5) p rdfs:subPropertyOf (11) C rdfs:subClassOf D</pre>	<pre>q & q rdfs:subPropertyOf r & D rdfs:subClassOf E</pre>	$r \implies p \text{ rdfs:subPropertyOf } r$ $\implies C \text{ rdfs:subClassOf } E$
(2) <i>s p o</i> (3) <i>s p o</i>	& p rdfs:domain D & p rdfs:range R	$\implies s \text{ rdf:type } D$ $\implies o \text{ rdf:type } R$
(7) <i>s p o</i> (9) <i>s</i> rdf:type <i>B</i>	& p rdfs:subPropertyOf & B rdfs:subClassOf C	$q \Longrightarrow s q o$ $\implies s rdf:type C$

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.</pre>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

rdfs:domain <C> .

3

4

5

6

7

8

<r> rdfs:domain <D> .

rdfs:subPropertyOf <r> .

<C> rdfs:subClassOf <D> .

<A> "01", "02", "03" .

<pre>(5) p rdfs:subProperty (11) C rdfs:subClassOf</pre>	<pre>v0f q & q rdfs:subProperty0 D & D rdfs:subClass0f E</pre>	$f r \implies p \text{ rdfs:subPropertyOf } r$ $E \implies C \text{ rdfs:subClassOf } E$
(2) <i>s p o</i> (3) <i>s p o</i>	& <i>p</i> rdfs:domain <i>D</i> & <i>p</i> rdfs:range <i>R</i>	$\implies s \text{ rdf:type } D$ $\implies o \text{ rdf:type } R$
 (7) <i>s p o</i> (9) <i>s</i> rdf:type <i>B</i> 	& p rdfs:subProperty0 & B rdfs:subClassOf C	$\begin{array}{ccc} \text{f} q \implies s \ q \ o \\ \implies s \ \texttt{rdf:type} \ C \end{array}$

Duplicates by rule

		DBpedia			YAGO2 Core		
Rule	Triples	Duplicates	Ratio	Triples	Duplicates	Ratio	
(5)	0	0	_	0	19	>	
(7)	0	0	_	3,551,361	88,477	0.03	
(2)	368,832	7,630,029	21	6,450,781	13,453,038	2.1	
(3)	568,715	4,939,870	8.7	409,193	1,511,512	3.7	
(11)	259	610	2	3,398,943	366,764	0.1	
(9)	0	8,329,278	>	6,685,946	3,173,957	0.5	
(11+9)	259	10,398,328	42,162	35,061,599	57,969,000	1.7	
all	1,650,607	23,775,152	14	45,766,218	89,370,361	2.0	

Duplicates by rule

	DBpedia			YAGO2 Core		
Rule	Triples	Duplicates	Ratio	Triples	Duplicates	Ratio
(5)	0	0	_	0	19	>
(7)	0	0	_	3,551,361	88,477	0.03
(2)	368,832	7,630,029	21	6,450,781	13,453,038	2.1
(3)	568,715	4,939,870	8.7	409,193	1,511,512	3.7
(11)	259	610	2	3,398,943	366,764	0.1
(9)	0	8,329,278	>	6,685,946	3,173,957	0.5
(11+9)	259	10,398,328	42,162	35,061,599	57,969,000	1.7
all	1,650,607	23,775,152	14	45,766,218	89,370,361	2.0

Global duplicate prevention

- Hash table in global device memory
- Each thread materializes triple only if not in hash table
- Table is static (not updated)

Local deduplication

- 1. Sort triples in local memory
- 2. Count adjacent duplicates
- 3. Caclulate new duplicate-free index
- 4. Zero out duplicates, rearrange unique values

data vector

data vector

data vector

data vector

Local dedup example data vector index vectors

0 I 0 0 0 I 0 I 0 I I I I I *I I* 2 3 *K*

Local dedup example index vectors data vector 4 5 d $\mathbf{0}$ k $r_i = \left\{egin{array}{cc} d_{i+k_i} & i+k_i < |d| \ 0 & ext{else} \end{array} ight.$

Local dedup example index vectors data vector 4 4 5 2 3 d k 4 5 r $r_i = \left\{egin{array}{cc} d_{i+k_i} & i+k_i < |d| \ 0 & ext{else} \end{array} ight.$

Experiments

- Exp1: study scalability on different levels of hardware parallelism
 - performed on 4 CPU server with 32 CUs
- Exp2: study efficacy of duplicate removal strategies
 - performed on 20 CU GPU device
- Exp3: compare to previous work

Datasets

- DBedia ontology, infobox types, infobox triples:
 - ~26M triples
 - ~1.7M new closure triples
- YAGO2Core
 - ~36M triples
 - ~46M new closure triples
- Both scaled to 1/2, ..., 1/16th of instance triples plus all schema triples

Results – Exp1

Results – Exp2

Dataset	Strategy	Kernel time (ms)	Closure time (ms)	Duplicates	Speedup
DBpedia	None	28.444	6,884.15	23,775,152	
	L	120.915	6,083.76	12,165,520	13.2 %
	G	52.305	6,635.60	1,511,758	3.7 %
	L+G	117.400	6,557.94	1,057,470	5 %
YAGO2/8	None	25.565	21,625.19	31,552,221	
	L	187.169	19,554.09	2,399,898	10.6 %
	G	53.948	21,622.31	29,357,936	0%
	L+G	215.947	19,807.66	1,786,753	9.2 %

Results – Exp3

	Input triples	Output triples	Damásio (ms)	Our system (ms)	Speedup
T2	366,490	3,617,532	23,619.90	9,038.89	$2.6 \times$
Τ6	1,942,887	4,947,407	18,602.43	1,964.49	9.5×

T6 also performed on M/R cluster in > 3 min

CPU – GPU comparison

Device	Kernel execution (ms)	Total (ms)
Core i7 3770 (CPU)	647.311	5509.92
Radeon HD 7870 (GPU)	114.683	5881.54

Conclusions/future work

- RDFS reasoning is can be done *massively* parallel
- Shared memory can be used for efficient parallel duplicate reduction
- low ALU:fetch ratio is unvaforable for GPU devices
- Data compression
- Multiple devices
- Reasoning on the FPU
- Complete implementation w.r.t. RDF semantics

Complexity of RDFS reasoning

- RDFS reasoning is in *P*, if *G* does not contain blank nodes (ter Horst, 2002)
- RDFS reasoning is *P*-complete (i.e. in *P* but not in *NC; Patel-Schneider, 2012*)
- NC problem can be solved in O(log^cn) time using O(n^k) processors
 - i.e. you can trade parallelism for complexity