
RDFS Reasoning on
Massively Parallel Hardware

Norman Heino, Jeff Z. Pan

University of Leipzig,
Germany
AKSW Research Group

University of Aberdeen,
United Kingdom
Dept. of Computing Science

Donnerstag, 15. November 12

RDFS reasoning
• Interpreting RDFS vocabulary can give rise

to new triples

• Model-theoretic semantic conditions from
RDF semantics document

• Incomplete set of rules

‧ we use subset with exactly two
antecedents

RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

RDFS reasoning
• Interpreting RDFS vocabulary can give rise

to new triples

• Model-theoretic semantic conditions from
RDF semantics document

• Incomplete set of rules

‧ we use subset with exactly two
antecedents

RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

Preliminaries
RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

Preliminaries
RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

• No rules with ,trivial‘ entailments

Donnerstag, 15. November 12

Preliminaries
RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

• No rules with ,trivial‘ entailments

• Ignore non-authorative statements

Donnerstag, 15. November 12

Preliminaries
RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

• No rules with ,trivial‘ entailments

• Ignore non-authorative statements

• Results obtained w/o axiomatic triples

Donnerstag, 15. November 12

Special cases

Table 1: Subset of the RDFS entailment rules with two antecedents.

(7)-1 s langProp1 o & langProp1 rdfs:subPropertyOf langProp2 =) s langProp2 o
(7)-2 s langProp o & langProp rdfs:subPropertyOf q =) s q o
(7)-3 s p o & p rdfs:subPropertyOf langProp =) s langProp o
(7)-4 s q o & p rdfs:subPropertyOf q =) s q o

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to di↵erent in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of e�ciently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of di↵erent rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel5 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1: RDF graph that produces duplicates when rules (2) and (9) are applied to
it.

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple hA, rdf:type,Ci. Applying rule (9) thereafter would entail the triple
hA, rdf:type,Di, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

5 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

Special cases

Table 1: Subset of the RDFS entailment rules with two antecedents.

(7)-1 s langProp1 o & langProp1 rdfs:subPropertyOf langProp2 =) s langProp2 o
(7)-2 s langProp o & langProp rdfs:subPropertyOf q =) s q o
(7)-3 s p o & p rdfs:subPropertyOf langProp =) s langProp o
(7)-4 s q o & p rdfs:subPropertyOf q =) s q o

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to di↵erent in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of e�ciently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of di↵erent rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel5 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1: RDF graph that produces duplicates when rules (2) and (9) are applied to
it.

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple hA, rdf:type,Ci. Applying rule (9) thereafter would entail the triple
hA, rdf:type,Di, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

5 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

Parallel RDFS reasoning

Donnerstag, 15. November 12

Parallel RDFS reasoning
• Cluster-based approaches

‧ MapReduce – Urbani et al. (2009)

‧ DHT – Kaoudi et al. (2008)

‧ Peer network – Weaver and Hendler et al. (2009)

Donnerstag, 15. November 12

Parallel RDFS reasoning
• Cluster-based approaches

‧ MapReduce – Urbani et al. (2009)

‧ DHT – Kaoudi et al. (2008)

‧ Peer network – Weaver and Hendler et al. (2009)

• HPC Implementation

‧ Cray XMT – Goodman and Mizell (2010)

Donnerstag, 15. November 12

Parallel RDFS reasoning
• Cluster-based approaches

‧ MapReduce – Urbani et al. (2009)

‧ DHT – Kaoudi et al. (2008)

‧ Peer network – Weaver and Hendler et al. (2009)

• HPC Implementation

‧ Cray XMT – Goodman and Mizell (2010)

Our platform: single host, massively parallel commodity hardware
with shared memory

Challenge: develop algorithm that allows for fine-grained
parallelism

Donnerstag, 15. November 12

OpenCL

• Vendor-agnostic model and API for
heterogenous parallel computation

• Khronos standard

• GPU, CPU, accellerators (Cell, DSPs)

• Host program controls submission of compute
kernels and data to hardware

• Compute kernels written in C99 subset

Donnerstag, 15. November 12

OpenCL memory model

Local memory

Global/constant memory

Local memory Local memory Local memory

Work item

Work group

Global/constant cache

Donnerstag, 15. November 12

Big picture

Donnerstag, 15. November 12

1. Parsing

Big picture

Donnerstag, 15. November 12

1. Parsing

2. Dictionary encoding

Big picture

Donnerstag, 15. November 12

1. Parsing

2. Dictionary encoding

3. In-memory storage

• one std::vector per column

• indexed by hash(triple)

Big picture

Donnerstag, 15. November 12

1. Parsing

2. Dictionary encoding

3. In-memory storage

• one std::vector per column

• indexed by hash(triple)

4. Copying data to device (PCIe bus)

Big picture

Donnerstag, 15. November 12

1. Parsing

2. Dictionary encoding

3. In-memory storage

• one std::vector per column

• indexed by hash(triple)

4. Copying data to device (PCIe bus)

5. Rule application on device

Big picture

Donnerstag, 15. November 12

1. Parsing

2. Dictionary encoding

3. In-memory storage

• one std::vector per column

• indexed by hash(triple)

4. Copying data to device (PCIe bus)

5. Rule application on device

6. Copying back, storing results

Big picture

Donnerstag, 15. November 12

Rule implementation

RDFS Reasoning on Massively Parallel Hardware 139

subsequent ones. In particular, if a schema triple is created during a rule application, it
will be used as such by subsequent rules. In addition, we perform a fixpoint iteration
over rules (5) and (7). This is necessary since rule (7) is able to produce arbitrary triples,
including schema triples, and is itself dependent on rule (5). Since it is possible to ex-
tend the RDFS vocabulary with custom properties, the fixpoint iteration is necessary to
materialize all schema triples before applying other rules. Figure 1 depicts our approach
with its four passes as well as synchronization steps in between.

Rules (5) + (7) Rule (2) Rule (3) Rules (9) + (11)

fixpoint iteration

global
synchronization

global
synchronization

global
synchronization

Fig. 1. Passes for computing the subset of the RDFS rules considered in this work

Computing Transitive Closure-Based Rules. Parallel algorithms for computing the
transitive closure of a graph are based on boolean matrix multiplication as proposed by
Warshall [20]. Due to its regular access pattern, it maps easily to the OpenCL mem-
ory model. Transitive property hierarchies on RDF graphs, however, tend to be very
sparse. In YAGO2 Core, for instance, the number of vertices taking part in the rdfs
:subClassOf relation is 365,419, while the number of triples using that property in
the full closure is about 3.4 million. Representing such a graph in a quadratic matrix is
wasteful since most entries will be zero. In YAGO2 Core, it is also infeasible because
storing the adjacency matrix of 365,419 vertices would require almost 16 GiB, if each
entry is compressed to a single bit.

A space-efficient serial algorithm for calculating the transitive closure of a graph
was presented by Nuutila [12]. We tried the implementation found in the Boost Graph
Library6 but it was unable to cope with the graph size from YAGO2 Core. We thus
provide our own implementation of that algorithm which is computed serially on the
host. A parallel implementation of the algorithm from [12] is beyond the scope of this
paper and will be reserved for future work.

Computing Join Rules. In our parallel implementation, each thread is assigned a sin-
gle instance triple based on its global identifier. Thus, a join rule needs to find a match-
ing subject of a schema triple.

A very efficient join algorithm in database systems is known as the hash join [4].
Hash joins are typically used in cases where a large relation must be joined with a
smaller one. A hash table is populated with the values of the smaller relation. For each
value of the large relation, a simple hash lookup can determine whether there is a match.
Once a matching schema subject has been found, the objects of all schema triples for
that particular rule can be used to materialize new triples.

6 http://www.boost.org/libs/graph/

• Could produce
schema triples

• Independent of (2),
could be run in parallelRDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

TC-based rules

• Transitive property hierachies have a
sparse adjacency matrix

‧ Quadratic algorithm (Warshall) is
infeasible

• Host-run serial implementation based on
work by Nuutila

Donnerstag, 15. November 12

Join rules

• Join instance triple with schema subject

‧ counting results

‧ computing index

• Materialize result triples in two passes

1
2
3
4

sschema0 o1
1
2
3
4

0

bucketsstartindex

h(sschema) mod n

size

2
1

1

2

5

o2 o33
sschema o11

Donnerstag, 15. November 12

The duplicate problem
@base <http://example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<p> rdfs:domain <C> .
<r> rdfs:domain <D> .
<p> rdfs:subPropertyOf <r> .
<C> rdfs:subClassOf <D> .
<A> <p> "O1", "O2", "O3" .

1
2
3
4
5
6
7
8

RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

The duplicate problem

<A> rdf:type <C><A> rdf:type <C><A> rdf:type <C>

@base <http://example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<p> rdfs:domain <C> .
<r> rdfs:domain <D> .
<p> rdfs:subPropertyOf <r> .
<C> rdfs:subClassOf <D> .
<A> <p> "O1", "O2", "O3" .

1
2
3
4
5
6
7
8

RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

The duplicate problem

<A> rdf:type <C><A> rdf:type <C><A> rdf:type <C>
<A> rdf:type <D><A> rdf:type <D><A> rdf:type <D>

@base <http://example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<p> rdfs:domain <C> .
<r> rdfs:domain <D> .
<p> rdfs:subPropertyOf <r> .
<C> rdfs:subClassOf <D> .
<A> <p> "O1", "O2", "O3" .

1
2
3
4
5
6
7
8

RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

Donnerstag, 15. November 12

The duplicate problem

<A> rdf:type <C><A> rdf:type <C><A> rdf:type <C>
<A> rdf:type <D><A> rdf:type <D><A> rdf:type <D>

@base <http://example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<p> rdfs:domain <C> .
<r> rdfs:domain <D> .
<p> rdfs:subPropertyOf <r> .
<C> rdfs:subClassOf <D> .
<A> <p> "O1", "O2", "O3" .

1
2
3
4
5
6
7
8

RDFS Reasoning on Massively Parallel Hardware 135

Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.

<A> rdf:type <D>

Donnerstag, 15. November 12

Duplicates by rule
RDFS Reasoning on Massively Parallel Hardware 141

Table 2. Number of triples generated per rule for DBpedia (ca. 26 million triples) and
YAGO2 Core (ca. 36 million triples) datasets

DBpedia YAGO2 Core

Rule Triples Duplicates Ratio Triples Duplicates Ratio

(5) 0 0 – 0 19 >
(7) 0 0 – 3,551,361 88,477 0.03
(2) 368,832 7,630,029 21 6,450,781 13,453,038 2.1
(3) 568,715 4,939,870 8.7 409,193 1,511,512 3.7
(11) 259 610 2 3,398,943 366,764 0.1
(9) 0 8,329,278 > 6,685,946 3,173,957 0.5
(11+9) 259 10,398,328 42,162 35,061,599 57,969,000 1.7
all 1,650,607 23,775,152 14 45,766,218 89,370,361 2.0

Preventing Global Duplicates. RDFS rules are verbose—the same conclusions can
be derived from different rules. Detecting such duplicates can only be done by allowing
each thread a global view of all the triples that are already stored. Since all rules that
produce large amounts of duplicates (i. e. (2), (3), and (9)) create triples with rdf:type
as the predicate, it is sufficient to index only those triples8. We use an indexing scheme
and a hash table similar to the one used for the schema elements when computing the
hash join. Our index is stored in two vectors: one maps the calculated hash value to a
bucket address, while the other one holds the buckets. The structure of buckets can be
kept simpler since, with a fixed predicate, each needs to contain only a subject and an
object. Due to its size, local memory cannot be used and we need to keep the index
in global device memory. Store operations to global memory cannot be synchronized
among threads in different work groups. Thus our index is static and is not extended
during computation.

Removing Local Duplicates. Avoiding rule-local duplicates on a global level cannot
be done in OpenCL, since global synchronization is not possible during kernel exe-
cution. Accordingly, we instead remove those duplicates on the device after they have
been materialized but before they are copied to the host. This frees the host from having
to deal with those duplicates.

Our procedure for locally removing duplicates is shown in Algorithm 1. It works
by first sorting the values in local memory. Each thread then determines whether its
neighbor’s value is a duplicate of its own value and if so, writes 1 into a flag buffer. A
parallel prefix sum is then performed over the flags. Thereafter, the flag buffer contains
for each thread the number of duplicate entries in threads with lower ids. If the flag
determined by a thread in line 4 was 0 (i. e. its neighbor’s value is not a duplicate of
its own), it is the first in a series of duplicates. Thus it copies its value to a position
in the global output buffer that is k positions lower than its own id, where k is a local
displacement value obtained from the scanned flag buffer.

8 Rule (11), though producing a large number of duplicates, is implemented in a serial algorithm
on the host and can thus not be addressed by this strategy.

Donnerstag, 15. November 12

Duplicates by rule
RDFS Reasoning on Massively Parallel Hardware 141

Table 2. Number of triples generated per rule for DBpedia (ca. 26 million triples) and
YAGO2 Core (ca. 36 million triples) datasets

DBpedia YAGO2 Core

Rule Triples Duplicates Ratio Triples Duplicates Ratio

(5) 0 0 – 0 19 >
(7) 0 0 – 3,551,361 88,477 0.03
(2) 368,832 7,630,029 21 6,450,781 13,453,038 2.1
(3) 568,715 4,939,870 8.7 409,193 1,511,512 3.7
(11) 259 610 2 3,398,943 366,764 0.1
(9) 0 8,329,278 > 6,685,946 3,173,957 0.5
(11+9) 259 10,398,328 42,162 35,061,599 57,969,000 1.7
all 1,650,607 23,775,152 14 45,766,218 89,370,361 2.0

Preventing Global Duplicates. RDFS rules are verbose—the same conclusions can
be derived from different rules. Detecting such duplicates can only be done by allowing
each thread a global view of all the triples that are already stored. Since all rules that
produce large amounts of duplicates (i. e. (2), (3), and (9)) create triples with rdf:type
as the predicate, it is sufficient to index only those triples8. We use an indexing scheme
and a hash table similar to the one used for the schema elements when computing the
hash join. Our index is stored in two vectors: one maps the calculated hash value to a
bucket address, while the other one holds the buckets. The structure of buckets can be
kept simpler since, with a fixed predicate, each needs to contain only a subject and an
object. Due to its size, local memory cannot be used and we need to keep the index
in global device memory. Store operations to global memory cannot be synchronized
among threads in different work groups. Thus our index is static and is not extended
during computation.

Removing Local Duplicates. Avoiding rule-local duplicates on a global level cannot
be done in OpenCL, since global synchronization is not possible during kernel exe-
cution. Accordingly, we instead remove those duplicates on the device after they have
been materialized but before they are copied to the host. This frees the host from having
to deal with those duplicates.

Our procedure for locally removing duplicates is shown in Algorithm 1. It works
by first sorting the values in local memory. Each thread then determines whether its
neighbor’s value is a duplicate of its own value and if so, writes 1 into a flag buffer. A
parallel prefix sum is then performed over the flags. Thereafter, the flag buffer contains
for each thread the number of duplicate entries in threads with lower ids. If the flag
determined by a thread in line 4 was 0 (i. e. its neighbor’s value is not a duplicate of
its own), it is the first in a series of duplicates. Thus it copies its value to a position
in the global output buffer that is k positions lower than its own id, where k is a local
displacement value obtained from the scanned flag buffer.

8 Rule (11), though producing a large number of duplicates, is implemented in a serial algorithm
on the host and can thus not be addressed by this strategy.

Donnerstag, 15. November 12

Global duplicate prevention

• Hash table in global device memory

• Each thread materializes triple only if not
in hash table

• Table is static (not updated)

Donnerstag, 15. November 12

Local deduplication

1. Sort triples in local memory

2. Count adjacent duplicates

3. Caclulate new duplicate-free index

4. Zero out duplicates, rearrange unique values

Donnerstag, 15. November 12

Local dedup example
data vector index vectors

Donnerstag, 15. November 12

Local dedup example

2 1 5 3 5 4 1 4

data vector index vectors

Donnerstag, 15. November 12

Local dedup example

2 1 5 3 5 4 1 4

data vector index vectors

1 1 2 3 4 4 5 5d

Donnerstag, 15. November 12

Local dedup example

2 1 5 3 5 4 1 4

data vector index vectors

1 1 2 3 4 4 5 5d 0 1 0 0 0 1 0 1

Donnerstag, 15. November 12

Local dedup example

2 1 5 3 5 4 1 4

data vector index vectors

1 1 2 3 4 4 5 5d

0 1 1 1 1 2 2 3 k

0 1 0 0 0 1 0 1

Donnerstag, 15. November 12

Local dedup example

2 1 5 3 5 4 1 4

data vector index vectors

1 1 2 3 4 4 5 5d

0 1 1 1 1 2 2 3 k

0 1 0 0 0 1 0 1

 = { ri
di+ki

0
i + < |d|ki

else

Donnerstag, 15. November 12

Local dedup example

2 1 5 3 5 4 1 4

data vector index vectors

1 1 2 3 4 4 5 5d

0 1 1 1 1 2 2 3 k

0 1 0 0 0 1 0 1

1 2 3 4 5 0 0 0r

 = { ri
di+ki

0
i + < |d|ki

else

Donnerstag, 15. November 12

Experiments

• Exp1: study scalability on different levels
of hardware parallelism

‧ performed on 4 CPU server with 32 CUs

• Exp2: study efficacy of duplicate removal
strategies

‧ performed on 20 CU GPU device

• Exp3: compare to previous work

Donnerstag, 15. November 12

Datasets

• DBedia ontology, infobox types, infobox triples:

‧ ~26M triples

‧ ~1.7M new closure triples

• YAGO2Core

‧ ~36M triples

‧ ~46M new closure triples

• Both scaled to 1/2, …, 1/16th of instance triples
plus all schema triples

Donnerstag, 15. November 12

Results – Exp1
RDFS Reasoning on Massively Parallel Hardware 145

number of cores used

ke
rn

el
 ru

nn
in

g
tim

e
(m

s)

2 4 8 16 32

45

90

180

360

720

1440

2880

DBpedia
DBpedia/2
DBpedia/4
DBpedia/8
DBpedia/16

(a) DBpedia

number of cores used
ke

rn
el

 ru
nn

in
g

tim
e

(m
s)

2 4 8 16 32

200

400

800

1600

3200

6400

12800

YAGO2
YAGO2/2
YAGO2/4
YAGO2/8
YAGO2/16

(b) YAGO2 Core

Fig. 2. Kernel running times on different numbers of CPU cores

Table 5 shows benchmark results on the GPU device for two datasets and different
combinations of duplicate removal strategies. For DBpedia we use the full dataset, we
use the YAGO2/8 dataset only since the full closure of YAGO2 does not fit into the GPU
memory. Note that, in this case, the closure would have to be computed in several runs
but an algorithm for dynamic data partitioning lies beyond the scope of this paper and
will be addressed in future work. In Table 5 one can see that the sorting step involved in
the Local strategy does increase the kernel running time to about four to seven times that
of the plain kernels without duplicate removal. The result is a reduction of the number
of duplicates by factor of up to 13 for YAGO2 and 2 for the DBpedia dataset. The total
time needed for computing the closure is reduced by 13 % for DBpedia and 11 % for
YAGO2 by this strategy.

The Global deduplication strategy appears to be less effective in terms of overall
speedup. Even though the number of duplicates reduced by it for the DBpedia dataset
is about seven times that of the Local strategy, closure computation is sped up by only

Table 5. Kernel and complete closure computing times on the GPU device with Local (L), Global
(G) or both duplicate removal strategies. The speedup is shown for the complete computation over
the None strategy.

Dataset Strategy Kernel time (ms) Closure time (ms) Duplicates Speedup

DBpedia None 28.444 6,884.15 23,775,152
L 120.915 6,083.76 12,165,520 13.2 %
G 52.305 6,635.60 1,511,758 3.7 %
L+G 117.400 6,557.94 1,057,470 5 %

YAGO2/8 None 25.565 21,625.19 31,552,221
L 187.169 19,554.09 2,399,898 10.6 %
G 53.948 21,622.31 29,357,936 0 %
L+G 215.947 19,807.66 1,786,753 9.2 %

Donnerstag, 15. November 12

Results – Exp2

RDFS Reasoning on Massively Parallel Hardware 145

number of cores used

ke
rn

el
 ru

nn
in

g
tim

e
(m

s)

2 4 8 16 32

45

90

180

360

720

1440

2880

DBpedia
DBpedia/2
DBpedia/4
DBpedia/8
DBpedia/16

(a) DBpedia

number of cores used

ke
rn

el
 ru

nn
in

g
tim

e
(m

s)

2 4 8 16 32

200

400

800

1600

3200

6400

12800

YAGO2
YAGO2/2
YAGO2/4
YAGO2/8
YAGO2/16

(b) YAGO2 Core

Fig. 2. Kernel running times on different numbers of CPU cores

Table 5 shows benchmark results on the GPU device for two datasets and different
combinations of duplicate removal strategies. For DBpedia we use the full dataset, we
use the YAGO2/8 dataset only since the full closure of YAGO2 does not fit into the GPU
memory. Note that, in this case, the closure would have to be computed in several runs
but an algorithm for dynamic data partitioning lies beyond the scope of this paper and
will be addressed in future work. In Table 5 one can see that the sorting step involved in
the Local strategy does increase the kernel running time to about four to seven times that
of the plain kernels without duplicate removal. The result is a reduction of the number
of duplicates by factor of up to 13 for YAGO2 and 2 for the DBpedia dataset. The total
time needed for computing the closure is reduced by 13 % for DBpedia and 11 % for
YAGO2 by this strategy.

The Global deduplication strategy appears to be less effective in terms of overall
speedup. Even though the number of duplicates reduced by it for the DBpedia dataset
is about seven times that of the Local strategy, closure computation is sped up by only

Table 5. Kernel and complete closure computing times on the GPU device with Local (L), Global
(G) or both duplicate removal strategies. The speedup is shown for the complete computation over
the None strategy.

Dataset Strategy Kernel time (ms) Closure time (ms) Duplicates Speedup

DBpedia None 28.444 6,884.15 23,775,152
L 120.915 6,083.76 12,165,520 13.2 %
G 52.305 6,635.60 1,511,758 3.7 %
L+G 117.400 6,557.94 1,057,470 5 %

YAGO2/8 None 25.565 21,625.19 31,552,221
L 187.169 19,554.09 2,399,898 10.6 %
G 53.948 21,622.31 29,357,936 0 %
L+G 215.947 19,807.66 1,786,753 9.2 %

Donnerstag, 15. November 12

Results – Exp3

RDFS Reasoning on Massively Parallel Hardware 143

we used an Opteron server with four CPUs having 8 cores each. It is exposed to OpenCL
as a single device having 32 compute units (cores). For our experiment we created sub-
devices with 16, 8, 4 and 2 compute units.

In order to study effectiveness of our optimizations, we performed another experi-
ment using a GPU device with 20 compute units. We measure kernel running time as
well as the time for computing the complete entailment. This includes time for setting
up index structures, executing our rule implementations, detecting any duplicates and
storing all entailed triples. We give results for no optimization, removing local dupli-
cates, preventing global duplicates as well as for both kinds of optimizations combined.

In order to compare our implementation with existing work we set up the system
described by Damásio et al. [3]. We used PostgreSQL 9.1.3 installed on our Ubuntu
system and configured it to use 6 GiB of system memory as buffer cache. Time mea-
surements of rule implementations were done by having PostgreSQL print timestamps
before and after each experiment and subtracting the values. To set up the system, we
followed the authors’ blog entry10. We performed the largest rdfs:subClassOf tran-
sitive closure experiment (T2) and the largest full closure experiment (T6) using the
non-annotated rule sets and the fastest implementation variant as reported in [3]. Be-
tween repetitions we emptied all tables and re-imported the data. The results of this
experiment are shown in Table 3. For T6 we had to disable literal detection within the
materialization kernel, which normally prevents triples with literal subjects from be-
ing materialized. Experiment T2 can be used to determine the baseline speedup that is
gained by using a native C++ implementation without GPU acceleration or parallelism
over the PL/pgSQL implementation used by Damásio and Ferreira [3]. We determined
this baseline speedup to be about 2.6. Experiment T6 is executed about 9.5 times faster
by our system. That is, our system actually performs more than three times better than
what one could expect given given the baseline speedup.

Table 3. Closure computation times for experiments T2 and T6 done by Damásio and Ferreira [3]
repeated on our hardware and the system described in this paper

Input triples Output triples Damásio (ms) Our system (ms) Speedup

T2 366,490 3,617,532 23,619.90 9,038.89 2.6×
T6 1,942,887 4,947,407 18,602.43 1,964.49 9.5×

Note that experiment T6 has also been done by Urbani et al. [19] on their MapRe-
duce implementation in more than three minutes. For this graph (∼1.9 million triples)
our system is much faster since the whole graph including index structures fits easily
into main memory, while the overhead of the MapReduce framework dominates their
experiment. This result would likely change if a significantly larger graph was used.
Sufficient disk-based data structures for managing such a graph are, however, beyond
the scope of this paper.

10 http://ardfsql.blogspot.de/

• T6 also performed on M/R cluster in
> 3 min

Donnerstag, 15. November 12

CPU – GPU comparison

146 N. Heino and J.Z. Pan

3.7 %. For the YAGO2 dataset, Global deduplication does not lead to a significant de-
crease in duplicates.

One possible explanation for the reduced efficacy of the Global strategy lies in our
implementation. We use a hash table that is built on the host and thus requires a sig-
nificant amount of serial work. Results shown in Table 5 suggest this cost to be almost
half that of removing duplicates. The Local strategy, on the other hand, is performed
entirely in parallel, thus coming almost for free when compared to the Global strategy.
One possible improvement that we will look at in the future is computing the hash table
on the device.

Table 6. Kernel execution and total closure computation time on CPU and GPU

Device Kernel execution (ms) Total (ms)

Core i7 3770 (CPU) 647.311 5509.92
Radeon HD 7870 (GPU) 114.683 5881.54

When comparing kernel execution times on GPU and CPU devices (shown in Table 6),
one can see that in our system kernels execute about five times faster on the GPU than
on the CPU. This is probably due to the large amount of parallelism exposed by modern
GPUs. However, this does not translate into shorter closure calculation times. If com-
putation is done on the CPU, host and device memory are essentially the same and no
copying takes place. On a GPU however, data must be copied over the PCI Express bus
to the device and results have to be copied back. Therefore to fully exploit GPU devices
the data transfered must be kept at a minimum. At the moment we do not handle this very
well since the OpenCL programming model requires buffers to be allocated in advance.
If duplicates are later detected the size of buffers cannot be reduced accordingly. Instead,
duplicate values are overwritten with zeros which allows easy detection on the host but
does not reduce the amount of data transfered.

5 Conclusion and Future Work

In difference to previous related work that mainly focused on distributed reasoning
via a cluster of compute notes, in this paper we tackled the problem of computing
a significant subset of the RDFS closure on massively parallel hardware in a shared
memory setting. We devised algorithms that can in theory exploit such high levels of
parallelism and showed their scalability to at least 16 cores on CPU hardware.

In addition, we addressed two issues that make parallel RDFS reasoning non-trivial:
i) we introduced a fixpoint iteration over rules (5) and (7) to support extension of the
RDFS vocabulary and ii) we devised two independent strategies for dealing with the
large number of duplicate triples that occur in naïve application of RDFS entailment
rules. In particular, we could show our Local strategy to be highly effective in terms of
speedup gain. The comparatively high cost for the Global strategy make it less effective
in our system. However, if the aim lies in maximum reduction of duplicates (e. g. if the

Donnerstag, 15. November 12

Conclusions/future work

• RDFS reasoning is can be done massively parallel

• Shared memory can be used for efficient parallel duplicate
reduction

• low ALU:fetch ratio is unvaforable for GPU devices

• Data compression

• Multiple devices

• Reasoning on the FPU

• Complete implementation w.r.t. RDF semantics

Donnerstag, 15. November 12

Donnerstag, 15. November 12

Complexity of RDFS reasoning

• RDFS reasoning is in P, if G does not contain
blank nodes (ter Horst, 2002)

• RDFS reasoning is P-complete (i.e. in P but
not in NC; Patel-Schneider, 2012)

• NC – problem can be solved in O(logcn)
time using O(nk) processors

‧ i.e. you can trade parallelism for complexity

Donnerstag, 15. November 12

