Formal Verification of Data Provenance Records

Szymon Klarman¹, Stefan Schlobach¹ and Luciano Serafini²

¹ Knowledge Representation & Reasoning Group VU University Amsterdam

² Data & Knowledge Management Group FBK Trento

November 14, 2012

The 11th International Semantic Web Conference (ISWC-12)

Problem: reasoning over data provenance

Sahoo, S., Sheth, A., Henson, C. Semantic Provenance for eScience: Managing the Deluge of Scientific Data. In *IEEE Internet Computing* 12(4), 2008.

Problem: reasoning over data provenance

List the protein groups identified with high confidence value – that is, protein groups with a Mascot score > 3500 – detected by the Mascot search engine against a T.cruzi database (Mascot search input parameter, Taxonomy = T.cruzi). The protein groups should contain at least one peptide fragment with a specific consensus sequence of $\{*N [P] [S/T]^*\}$.

Sahoo, S., Sheth, A., Henson, C. Semantic Provenance for eScience: Managing the Deluge of Scientific Data. In *IEEE Internet Computing* 12(4), 2008.

Overview

Problem:

How to *formally verify* data provenance records? This involves:

- adequately representing provenance records,
- defining a language for expressing relevant properties,
- ensuring that reasoning is "manageable".

Approach:

- Provenance records resemble *transition systems*, which are typically verified using various *dynamic logics*.
- We develop *Provenance Specification Logic* for verifying and querying data provenance records, based on Propositional Dynamic Logic and standard query languages.

Data provenance records

A data provenance record is the *history of derivation* of a *data artifact* from its sources.

Note: Particular representation languages come with dedicated query languages, e.g., conjunctive queries for DLs/OWL, datalog for OWL RL, SPARQL for RDF(S).

Data provenance records

Provenance graphs:

- process nodes: P
- data artifact nodes: D₁, D₂, D₃ (each corresponding to a data artifact)
- edges labeled with relation names,
 e.g.: wasGeneratedBy, used.
- directed, acyclic, finite.

L. Moreau, et al. **The open provenance model** – **core specification.** In *Future Generation Computer Systems* 27, 2010.

Verification as model-checking

Provenance graphs are very similar to *finite-state transition systems*.

- natural to analyze using the framework of modal logics, in particular *Propositional Dynamic Logic*,
- basic reasoning task is model-checking,
- we need to replace propositions with richer formulas *queries* and effectively work with *two-dimensional languages*.

Provenance specification logic

Object formulas: q ::= queries from a given class Q

Path expressions: $\pi ::= r \mid \pi; \pi \mid \pi \cup \pi \mid \pi^- \mid \pi^* \mid v? \mid \alpha?$

Provenance formulas: $\alpha ::= \{q\} \mid \langle \pi \rangle \alpha \mid \alpha \wedge \alpha \mid \neg \alpha \mid \top$

The semantics is a *combination of the semantics* of PDL and Q-queries:

- a sequence of instances \vec{a} is an answer to α iff $G, v \models \alpha[\vec{a}]$
- for a query $q(\vec{x})$ in α , and node v, $q(\vec{x})$ is satisfied in v for \vec{a} iff $D(v) \models q[\vec{a}|_{\vec{x}}]$

Model-checking problem: given a provenance graph G, node v, provenance formula α , and a sequence \vec{a} , decide wether $G, v \models \alpha[\vec{a}]$.

The First Provenance Challenge

- a workflow for creating "atlases" of high resolution anatomical data
- 9 queries about the resulting provenance records

L. Moreau, et al. Special issue: The First Provenance Challenge. In Concurrency and Computation: Practice and Experience 20, 2008.

Example

Q: Find all output averaged images of softmean (average) procedures, where the warped images taken as input were align warp'ed using a twelfth order nonlinear 1365 parameter model, i.e. where softmean was preceded in the workflow, directly or indirectly, by an align warp procedure with argument -m 12.

```
\alpha := \{ | lmage(x) \} \land \langle wasGeneretedBy; softmean_{1...n}; used \rangle (\{ \exists y. | lmage(y) \} \land \langle (wasGeneratedBy; used)^*; wasGeneratedBy; align-warp_{1...m} \rangle \top )
\text{where:} \quad softmean_{1...n} := softmean-1? \cup \ldots \cup softmean-n?
\quad align-warp_{1...m} := align-warp-1? \cup \ldots \cup align-warp-m?
```

Accommodating rich provenance metadata

Represent the provenance graph as a *separate* (meta-)*knowledge base*.

Add new *test operator C*?, for a concept *C* of the provenance language.

$$G, v \models C$$
? iff meta-KB $\models C(v)$

Example cntd.

Q: [...] was preceded in the workflow, directly or indirectly, by an align warp procedure with argument -m 12.

Provenance meta-KB:

- Align-warp

 □ Process
- Align-warp $\sqsubseteq \exists argument. String$
- Align-warp(align-warp_i), for every $1 \le i \le m$,
- $argument(align-warp_k, "-m 12")$, for every $align-warp_k$ with argument "-m 12".

```
\alpha := ... \langle (wasGeneratedBy; used)^*; wasGeneratedBy; align-warp_{1...m} \rangle \top
```

```
where: align-warp_{1...m} := align-warp-1? \cup ... \cup align-warp-m?
```

replace: $align-warp_{1...m}$

with: Align-warp $\sqcap \exists argument.$ "-m 12"?

Observations

- we assume this collection is representative of the problem of reasoning with data provenance,
- the tasks consist of a logical verification component and a search component,
- the logical verification component can be captured by PSL, often by breaking down complex tasks into a number of model-checking problems,
- the queries are essentially two-dimensional,
- some patterns could be usefully compiled out as a syntactic sugar.

Reasoning

Reasoning in PSL is PTIME^{SW}-complete, where:

- \bullet PTIME is the complexity of model-checking in PDL,
- ·SW is an oracle performing reasoning with the Semantic Web representation/query languages used, of the respective complexity.

Summary

Our problem involved:

- adequately representing provenance records
 - ⇒ provenance graphs, i.e. transition systems with rich data states. The approach is agnostic as to the choice of particular data and provenance languages,
- defining a language for expressing relevant properties
 - \Rightarrow *PSL* = dynamic logic + query formulas as atoms,
- ensuring that reasoning is "manageable"
 - $\Rightarrow PTIME^{SW}$ -completeness is good!

Conclusion:

A generic, declarative approach to reasoning with data provenance records.

Outlook:

Broader validation, implementation, study of most useful setups.