


Enabling networked knowledge 



















3 



















































































–

–

















☛













 



Evaluation of Linked Data Stream Processing Engines: Facts and Figures 307

Table2. Output Mismatch, |Udata | = 219825, |Spc | = 102955

Rate: 100 (input elements/sec) Rate: 1000 (input elements/sec)

Output size Mismatch (%) Output size Mismatch (%)

Q CQ CS JT CQ—CS CQ—JT CS—JT CQ CS JT CQ—CS CQ—JT CS—JT

1 68 604 68 1.47 0.00 0.00 0.00 0.00 1.47 68 662 68 1.47 0.00 0.00 0.00 0.00 1.47

2 68 124 68 1.47 0.00 0.00 0.00 0.00 1.47 68 123 68 1.47 0.00 0.00 0.00 0.00 1.47

3 533 1065 533 0.00 0.00 0.00 0.00 0.00 0.00 533 1065 533 0.00 0.00 0.00 0.00 0.00 0.00

4 11948 125910 1442 1.69 1.10 87.93 0.00 78.91 0.07 11945 127026 4462 1.54 1.12 62.65 0.00 52.79 0.02

10 28021 205986 28021 14.96 0.04 87.66 0.00 44.67 0.00 28021 209916 28021 14.70 0.04 86.30 0.00 43.25 0.00

Table3. (Comparable) Maximum Execution Throughput

Q1 Q2 Q3 Q4 Q5 Q6 Q10

CQELS 24122 8462 9828 1304 7459 3491 2326

C-SPARQL 10 1.68 1.63 10 1.72 1.71 10

JTALIS 3790 3857 1062 99 — — 87

If P
j
i is an empty sequence, we define match(P

j
i ) = j . Otherwise, for each element

ai r s
∈ P

j
i , let match(ai r s

) be the smallest index t, where j ≤ t ≤ n2, such that

ai r s
= bt , and let match(P

j
i ) = min{ match(ai r s

) | ai r s
∈ P

j
i } .

We now can define the maximal remainder sequenceof OE 1
that is covered by OE 2

as T1, . . . , Tm , where T1 = P1
1 = A1 OE 2

1 and Ti = P
match(Ti − 1 )
i = A i

OE 2
match(Ti − 1) for 1 < i ≤ m. Intuitively, we progressively compute the maximal

remainder of each block, starting with the slice OE 2
1 from the beginning of OE 2

.

When finishing with one block, we move on to the next one and shift the slice to the

minimal match of the last block.

The mismatch is mm(E1, E2, Q, R) =
Σ m

i = 1(|A i | − |Ti |)

Σ m
i = 1|A i |

× 100%

Table 2 reports the mismatches between the engines on Q1-Q4 and Q10. For a col-

umn labeled with E1—E2 where E1 = E2 ∈ { CQ, CS, JT} , the left sub-column

presents mm(E1, E2, Q, R) and the right one shows mm(E2, E1, Q, R), respectively.

For simple queries Q1-Q3, the mismatches are very small, meaning that CSPARQL

computes many duplicates but almost of all its output is covered by CQELS and JTALIS.

When the query complexity increases in Q4 and Q10, CSPARQL misses more an-

swers of CQELS as mm(CQ, CS, Q4, 100) = 1.69% and mm(CQ, CS, Q10, 100) =

14.96%. On the other hand, JTALIS produces far less output than the other two for Q4,

due to the reasons in explanation (ii) above. The big mismatches here (from 52.79% to

87.93%) result from the different execution speeds of JTALIS and the other engines.

Interestingly, CQELS and JTALIS output the same number of tuples for Q10, but the

contents are very different: mm(CQ, JT, Q10, 100) = 87.66%and mm(CQ, JT, Q10,

1000) = 86.30%. This is because Q10 is a simple aggregation, which gives one answer

for every input; hence we have the same number of output tuples between CQELS

and JTALIS, which follow the same execution strategy (eager). However, again the

difference in execution speed causes the mismatch in the output contents. For all queries

Evaluation of Linked Data Stream Processing Engines: Facts and Figures 307

Table2. Output Mismatch, |Udata | = 219825, |Spc | = 102955

Rate: 100 (input elements/sec) Rate: 1000 (input elements/sec)

Output size Mismatch (%) Output size Mismatch (%)

Q CQ CS JT CQ—CS CQ—JT CS—JT CQ CS JT CQ—CS CQ—JT CS—JT

1 68 604 68 1.47 0.00 0.00 0.00 0.00 1.47 68 662 68 1.47 0.00 0.00 0.00 0.00 1.47

2 68 124 68 1.47 0.00 0.00 0.00 0.00 1.47 68 123 68 1.47 0.00 0.00 0.00 0.00 1.47

3 533 1065 533 0.00 0.00 0.00 0.00 0.00 0.00 533 1065 533 0.00 0.00 0.00 0.00 0.00 0.00

4 11948 125910 1442 1.69 1.10 87.93 0.00 78.91 0.07 11945 127026 4462 1.54 1.12 62.65 0.00 52.79 0.02

10 28021 205986 28021 14.96 0.04 87.66 0.00 44.67 0.00 28021 209916 28021 14.70 0.04 86.30 0.00 43.25 0.00

Table3. (Comparable) Maximum Execution Throughput

Q1 Q2 Q3 Q4 Q5 Q6 Q10

CQELS 24122 8462 9828 1304 7459 3491 2326

C-SPARQL 10 1.68 1.63 10 1.72 1.71 10

JTALIS 3790 3857 1062 99 — — 87

If P
j
i is an empty sequence, we define match(P

j
i ) = j . Otherwise, for each element

ai r s
∈ P

j
i , let match(ai r s

) be the smallest index t, where j ≤ t ≤ n2, such that

ai r s
= bt , and let match(P

j
i ) = min{ match(ai r s

) | ai r s
∈ P

j
i } .

We now can define the maximal remainder sequenceof OE 1
that is covered by OE 2

as T1, . . . , Tm , where T1 = P1
1 = A1 OE 2

1 and Ti = P
match (Ti − 1 )
i = A i

OE 2
match(Ti − 1) for 1 < i ≤ m. Intuitively, we progressively compute the maximal

remainder of each block, starting with the slice OE 2
1 from the beginning of OE 2

.

When finishing with one block, we move on to the next one and shift the slice to the

minimal match of the last block.

The mismatch is mm(E1, E2, Q, R) =
Σ m

i = 1(|A i | − |Ti |)

Σ m
i = 1|A i |

× 100%

Table 2 reports the mismatches between the engines on Q1-Q4 and Q10. For a col-

umn labeled with E1—E2 where E1 = E2 ∈ { CQ, CS, JT} , the left sub-column

presents mm(E1, E2, Q, R) and the right one shows mm(E2, E1, Q, R), respectively.

For simple queries Q1-Q3, the mismatches are very small, meaning that CSPARQL

computes many duplicates but almost of all its output is covered by CQELS and JTALIS.

When the query complexity increases in Q4 and Q10, CSPARQL misses more an-

swers of CQELS as mm(CQ, CS, Q4, 100) = 1.69% and mm(CQ, CS, Q10, 100) =

14.96%. On the other hand, JTALIS produces far less output than the other two for Q4,

due to the reasons in explanation (ii) above. The big mismatches here (from 52.79% to

87.93%) result from the different execution speeds of JTALIS and the other engines.

Interestingly, CQELS and JTALIS output the same number of tuples for Q10, but the

contents are very different: mm(CQ, JT, Q10, 100) = 87.66%and mm(CQ, JT, Q10,

1000) = 86.30%. This is because Q10 is a simple aggregation, which gives one answer

for every input; hence we have the same number of output tuples between CQELS

and JTALIS, which follow the same execution strategy (eager). However, again the

difference in execution speed causes the mismatch in the output contents. For all queries



















































–

–

– Static data size 

– Number of current queries 


