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Lecture 1 :  3rd generation light sources

� Objectives
� Principle of synchrotron radiation emission
� Main characteristics and features
� What is a beamline ?
� Examples of application
� Main facilities existing or in project

CONTENT
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OBJECTIVES

Synchrotron radiation facilities are designed to provide light  
simultaneously to many beamlines

The light ranges from Infra-Red up to hard X-Ray (~50 keV)

The characteristics of these beams make them very attractive to 
investigate matter be it solid, liquid or gazes. 

A 3rd generation light source is a photon factory which enables 
scientists of many different fields to perform thousands of 
experiments per year.  
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Synchrotron generations

Enhancement of 
radiation sources last 

century

In terms of brilliancy (flow emitted divided by 
the source’s surface and emission cone), 
SOLEIL will be 4 to 7 times more  powerful 
than the current national facilities 
(SUPERACO and DCI).

1st generation: Parasitic use on 
Nuclear physics machines

2nd generation: Dedicated 
machines. Radiation from Bending 
Magnets and Wigglers (Flux).

Multipurpose beamlines
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3333rdrdrdrd generationgenerationgenerationgeneration Synchrotron light sourcesSynchrotron light sourcesSynchrotron light sourcesSynchrotron light sources

• Machines optimised for High Brilliance

• Smaller source sizes, higher current

• Highly performing insertion devicesmatched to the beamline needs

• Beamlines much more accurate (specific scientific use).
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Synchrotron radiation is generated when a charged particle travelling at the 
speed of light is submitted to the action of a magnetic field.

Its trajectory is bent (Lorentz Force) and the particle suffers a deceleration : It 
radiates some light and loses a small fraction of its energy. 

Synchrotron radiation

The light is emitted in a fan tangent to the trajectory of the particle
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Slowed down electrons

Synchrotron radiation

BENDING
MAGNET

Synchrotron radiation

Due to the bending of their trajectory, the electrons are slowed down by their self field 
and lose energy.

They emit photons in a direction tangent to their trajectory
=>This is synchrotron radiation

Bending magnetBending magnetBending magnetBending magnet

Ultra relativistic
Electron bunches
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c = light velocity ; ρ = radius of curvature ; E = particle energy ; moc2 = particle rest 
mass ;  

Introducing γ, with E=γ moc2 =>

=> The power radiated is much easier to produce with electrons than with protons.  

Synchrotron radiation
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The energy loss per turn in a circular accelerator is :

c = light velocity ; ρ = radius of curvature ; E = particle energy ; moc2 = particle rest 
mass ; tBM = traveling time in the bending magnets

or in practical units (for electrons) 

Synchrotron radiation
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Emission angle
(in the laboratory frame)

Synchrotron radiation
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The axially-symmetric radiation distribution in the moving frame K’ (a.) transforms into a 
sharply forward peaked distribution in the laboratory frame (b.), with a half opening-
angle θ=1/γ. 

For E = 2.75 GeV: γ = 5382      then tan θ ~ θ = 0.186 mrad = 0.01° 

This is one of the most useful features of synchrot ron radiation.
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Synchrotron radiation

Radiation from a bending magnet (magnetic field B): 
Broad spectrum, with critical energy :
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Synchrotron radiation
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The Undulator technology: Periodic magnetic field +B/-B

summing up many oscillations enables to enhance the radiation brightness by several 
orders of magnitude

Insertion device Synchrotron radiation
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Insertion device Synchrotron radiation

It consists of a periodic arrangement of
short bending magnets of alternating
polarity.

Insertion Device :        sinusoida l field B B
s
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Wiggler Synchrotron radiation

Wiggler Regime α γ> 1 /

λ0

X
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In the wiggler regime K >>1 the 
observer sees a train of distinct light 
pulses, which adds incoherently => 
Broad spectrum

Wiggler: Flux ~ Ne - x Nperiod

Bending Magnet: Flux ~ Ne -
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Bending Magnet : B = 0.8T

ESRF :  E = 6 GeV       I = 200 mA
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Undulator Synchrotron radiation

In the undulator regime K ~2 the angle and the transverse displacement of the electron 
is so small that the observer can see the electron during the full length of the ID  
therefore during a much longer time interval. This results in a much thinner spectrum 
around privileged photon energies called undulator harmonics .

Undulator: Flux ~ Ne - x [Nperiod ]2

gain (10 4 – 105)

Undulator Regime α ∼ 1/ γ
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Undulator Synchrotron radiation

Interferences along the N periods =>
Discrete lines spectrum with :
• Line width scaling as (∆λ/λ)harm n~1/nN
• Peak value scaling as N2
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Undulator Synchrotron radiation

Wave length emitted on harmonic n

λλλλn= λλλλu(1 + + + + K 2/2 + γγγγ2222θθθθ2222) /(2n γγγγ2) 

 λu is the undulator magnetic period 
 θ is the angle of observation

⇒Photon energy depends on the observation angle
⇒Great sensitivity to spread in θθθθ or γγγγ
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 20 6.56
 19 6.13
 18 5.72

17 5.29
16 4.83
15 4.40
14 3.97
13 3.53
12 3.15
11 2.77

Undulator Synchrotron radiation

The energy (or wave length) of the emitted photons can be finely
tuned by varying the magnetic field ( gap or current) in the undulator

ESRF
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Undulator Synchrotron radiation

The energy (or wave length) of the emitted photons can be finely
tuned by varying the magnetic field ( gap or current) in the undulator

SOLEIL
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Synchrotron radiation

Broad Spectrum which covers from IR to hard X-rays.

White source (Bending magnets) or Narrow spectrum tunable (Undulators)

High Flux : high intensity photon beam

High Brilliance (Spectral Brightness): highly collimated photon beam generated by 
a small divergence and small size source (partial coherence)

Polarisation: both linear and circular (tunable with IDs)

Pulsed Time Structure: pulsed durations down to tens of picoseconds

Flux = Photons / ( s x 0.1% BW )

Brilliance = Photons / ( s x mm 2 x mrad 2 x 0.1% BW )

Synchrotron radiation properties :
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Synchrotron radiation
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Synchrotron radiation facility

Storage Ring Beamline

Beamline

BeamlineBeamline

Beamline

Beamline

Beamline
Beamline

All beamlines get beam simultaneously
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Synchrotron radiation facility

Movable absorbers in the front-end 
enable each beamline to stop the 
Xray beam inside the SR tunnel.
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A Beamline = several hutches

Neighbouring 
beamline

Storage Ring

Control hutch

Experiment hutch

Optical hutch
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A Beamline = several hutches

Neighbouring 
beamline

Storage Ring

Monochromator :

High resolution

δλ/λδλ/λδλ/λδλ/λ ~10-4

Optical hutch : where the photon energy is selected, the Xray
beam focused =>Monochromator, mirrors, slits
Lead shielding required to stop bremsstrahlung from SR tunnel
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A Beamline = several hutches

Neighbouring 
beamline

Storage Ring

Experimental hutch : where the sample is exposed to SR
=> Goniometer, diffractometer, detectors,..
Lead shielding required if Exray > ~5 keV
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A Beamline = several hutches

Neighbouring 
beamline

Storage Ring

Control hutch : where the scientists control the experiment
Computers, storage disks (up to Gbit/sec !),.. Coffee machine
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Interaction of light in matter

These techniques enable to analyse
• the chemical composition (with ultra high sensitivity)
• the atomic order, or the type of chemical bonding,
• …

SYNCHROTRON SPECIFICITIES:
- Enhanced performances in 
fluorescence, in diffraction and in 
Xray micro-tomography

- specific techniques in Xray
absorption and Xray microscopy 
(energy scanning, phase contrast)
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Condensed
Matter
Physics

Dilute
Matter
Studies

Earth and
Universe
Science

Life Science Chemistry

Environmental
Sciences

NanosciencesHealthCultural     
Heritage

15%

15,5%

15.5%

26%

21%

Industrial applications

Up to 10% of beamtime



JM Filhol CERN lecture 1, March 5 & 6 2009                  32

Détection de substances polluantes, 
optimisation de pôts catalytiques, 
nouveaux matériaux…

Élaboration de nouveaux matériaux, 
(ex : semi et supra conducteurs, disque 
durs et mémoire magnétique,batteries, 

étude de la prise rapide de ciment)

Connaissance de la 
structure des matériaux 
du manteau terrestre…

Recherche de nouveaux 
médicaments, imagerie 

des tissus osseux, 
vaisseaux sanguins, étude 

de l’ADN...

Procédés catalytiques, exploration de 
la matière et connaissance de ses 
propriétés électroniques, magnétiques 
(ex: stockage magnétique haute densité)

Dans tous les domaines, un large accueil est prévu p our les industriels
Archéologie, patrimoine, aéronautique, pharmacologie, microélectronique…

Fields of application
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1) Frozen cristal

3) Laue patterns 
recording

Synchrotron radiation
18-25 keV

Diffracted Xrays

goniomètre

Cristal de protéine

Rayons X 2) diffraction

Protein crystallography

4) Data processing
5) Protein Structure

Millions of atoms !
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Painter authentification : Durer
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I. Reiche et al.    CRRMF 

From the analysis of micro samples =>

Composition of the pen : silver + copper , Traces o f mercury : impairing phenomenon
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Environmental science

High sensitivity to identify week traces of materia l

300 µm 300 µm

Pb Fe

Microfluorescence mapping of polluted soil : 
spatial correlation between concentrations of lead 
and iron in the soil of a shooting stand
(D. Vantelon et R. Kretzschmar)
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Complex multi-layered varnishes on 
historical musical instruments

(a)

(b)

(c)
Dr J.P. Echard ( Cité Musique Paris) Dr.Loïc Bertrand
(SOLEIL) , Dr.A.S Le Hô (SOLEIL), Dr.S. Vaiedelich (Cité
Musique) Dr. S. Le Conte (Cité Musique). Alex VON 
BOHLEN (Germany) 50 µµµµm

�Varnishes often present a complex structure of 
layers often thinner than 10-20 µm (mixture of 
organic (oils, natural resins,…) and inorganic 
(pigments, siccatives,…) materials.

�re-create an ideal ancient varnish, typically the one 
of Antonio Stradivari

� The IR microscope at SMIS has  a complementary 
fluorescence accessory, which helps identifying the 
region of interest (a) 

�Presence of protein has been identified through its 
characteristic IR spectrum (b) 
�One of layer is made of protein ( c)

�This is the first time a protein layer has been 
identified in a ancient violin multilayers

1000  1500  2000  2500  3000  3500  

Wavenumbers (cm-1)
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Existing 3rd GLS

1992 ESRF, France (EU) 6 GeV
ALS , US 1.5-1.9 GeV

1993 TLS, Taiwan 1.5 GeV
1994 ELETTRA, Italy 2.4 GeV

PLS, Korea 2 GeV
MAX II, Sweden 1.5 GeV 

1996 APS, US 7 GeV
LNLS , Brazil 1.35 GeV 

1997 Spring-8 , Japan 8 GeV
1998 BESSY II, Germany 1.9 GeV
2000 ANKA , Germany 2.5 GeV

SLS, Switzerland 2.4 GeV
2004 SPEAR3, US 3 GeV

CLS, Canada 2.9 GeV
2006: SOLEIL , France 2.8 GeV 

DIAMOND, UK 3 GeV 
ASP, Australia 3 GeV
MAX III, Sweden 700 MeV
Indus-II , India 2.5 GeV 

2008 SSRF, China 3.4 GeV 

ESRF

SSRF
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3rd GLS under construction

2009 ALBA , Spain 3 GeV 
Petra-III , Germany 6 GeV

> 2009 NSLS-II, US 3 GeV 
SESAME, Jordan 2.5 GeV

MAX-IV, Sweden 3 GeV 
TPS, Taiwan 3 GeV 
CANDLE , Armenia 3 GeV 

under construction or planned

ALBA

PETRA-III
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3rd GLS under construction

The  3rd Generation Light Sources can be sorted in 2 categories :

The medium size / low energy Storage Rings

⇒ Circumference  = 100 to 300 m, 

⇒ Energy = 1 to 3 GeV

⇒ X-Ray energy = 10 eV to 30 keV

The large size / high energy Storage Rings

⇒Circumference  = 800 to 1300 m, 

⇒ Energy = 6 to 8 GeV

⇒ X-Ray energy =  0.1 to 300 keV

ESRF (Grenoble, France), APS (Chicago, USA), SPRING8 (Hyogo,Japan), 
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Brilliance

Medium energy storage rings with In-vacuum undulators operated at low gaps 
(e.g. 5-7 mm) can reach 10 keV with a brilliance of 1020 ph/s/0.1%BW/mm2/mrad2

Thanks to the progress with IDs technology storage ring light sources can cover a 
photon range from few tens of eV to tens 10 keV or more with high brilliance


