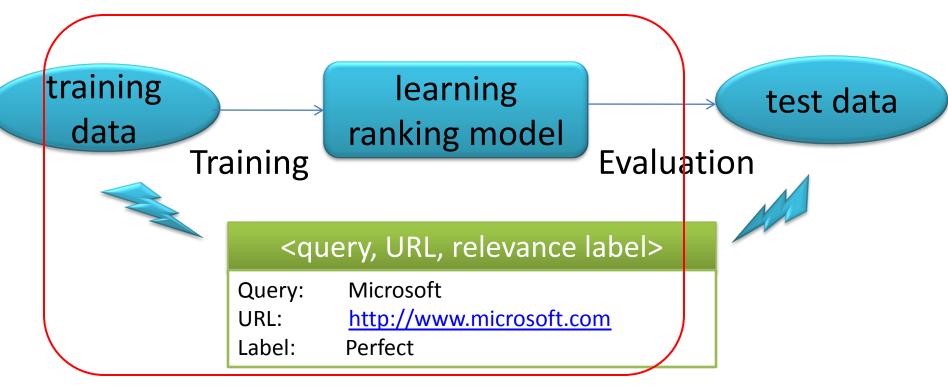


WSDM 2010 NYC

Improving Quality of Training Data for Learning to Rank Using Click-Through Data

Jingfang Xu, Chuanliang Chen, Gu Xu, Hang Li, Elbio Abib

Learning to Rank



- Relevance label:
 - Assigned by human judges
 - Prone to contain errors
- This work: training data quality

Talk Outline

How Training Data Quality Affects Learning to Rank

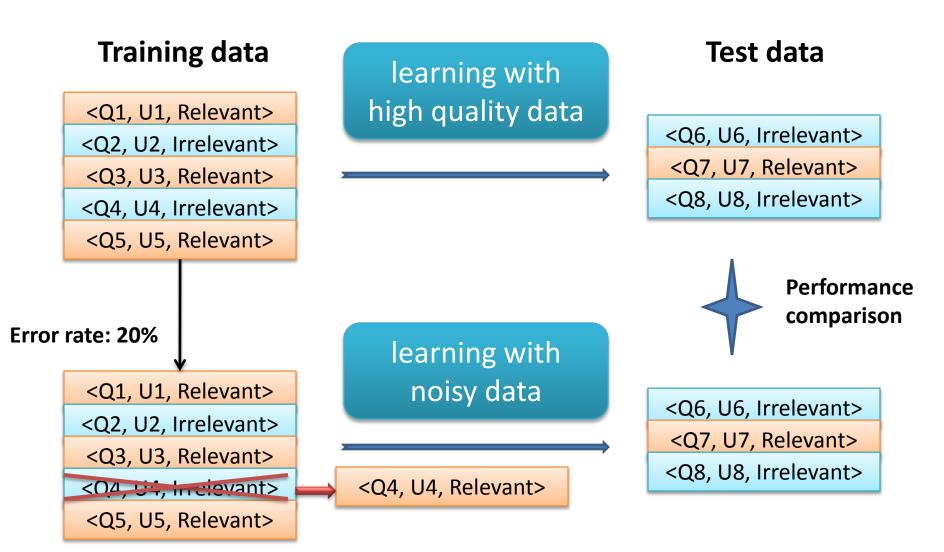
Training Data Quality

Label Prediction Using Click-through Data

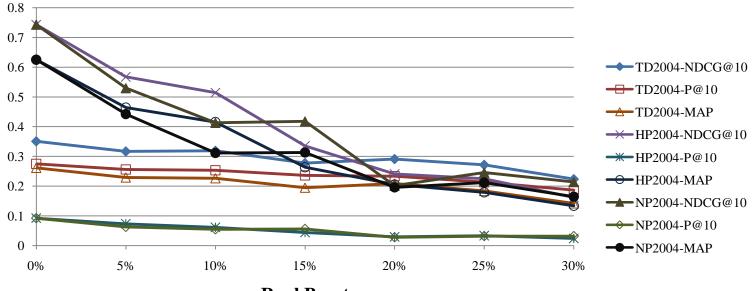
Improving Training Data Quality Using Clickthrough Data

How Training Data Quality Affects Learning to Rank

Simulation on LETOR Datasets



Performance Degrades When Error Rate Increases

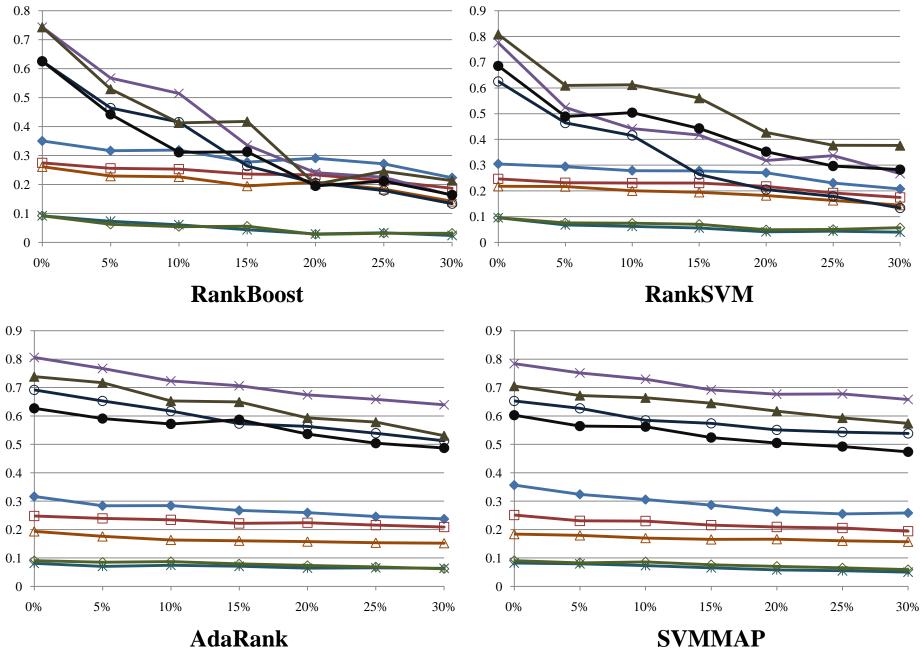


RankBoost

Relative decrease in MAP

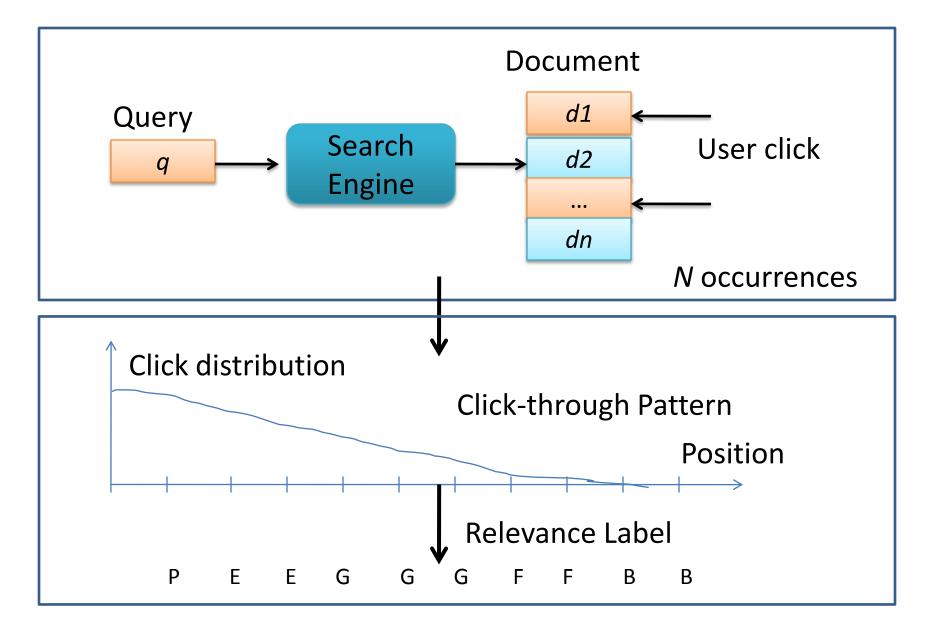
Error Rate	TD2004	HP2004	NP2004
5%	12%	36%	29%
30%	46%	70%	74%

Similar Results on Other Algorithms



Label Prediction Using Click-Through Data

Relevance Label Prediction



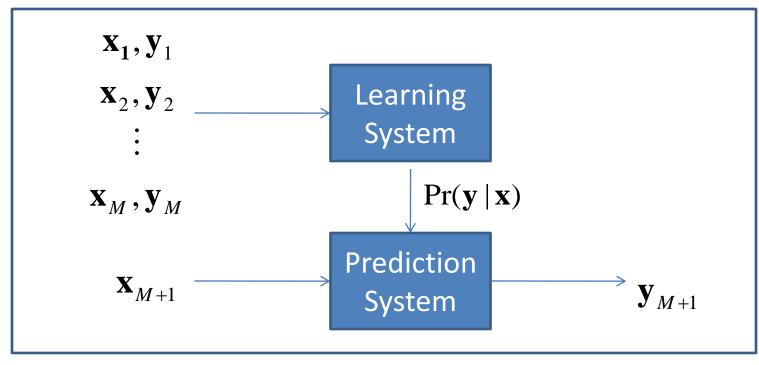
Relevance Label Prediction (cont')

 $\Pr(\mathbf{y}|\mathbf{x}) = p((y_1, y_2, \dots, y_n) | (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n))$

x: click-through pattern

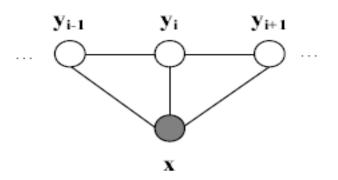
y: relevance label

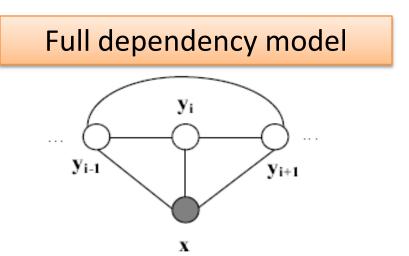
Supervised Learning Problem (Carterette & Jones 2007)



Two Dependency Models

Sequential dependency model





- Dependency between labels of adjacent document pairs
- Dependency between labels of any document pairs

Two Dependency Models (cont')

Sequential dependency Model Edge feature

$$\Pr_{\theta}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(\sum_{i,k} \lambda_k^i f_k(y_{i-1}, y_i, \mathbf{x}) + \sum_{i,k} \mu_k^i g_k(y_i, \mathbf{x}))$$
$$Vertex feature$$
$$Z(\mathbf{x}) = \sum_{\mathbf{y}} \exp(\sum_{i,k} \lambda_k^i f_k(y_{i-1}, y_i, \mathbf{x}) + \sum_{i,k} \mu_k^i g_k(y_i, \mathbf{x}))$$

Full dependency Model Position dependent

$$\Pr_{\theta}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(\sum_{i,j,k} \lambda_k^{i,j} f_k(y_i, y_j, \mathbf{x}) + \sum_{i,k} \mu_k^i g_k(y_i, \mathbf{x}))$$

$$Z(\mathbf{x}) = \sum_{\mathbf{y}} \exp(\sum_{i,j,k} \lambda_k^{i,j} f_k(y_i, y_j, \mathbf{x}) + \sum_{i,k} \mu_k^i g_k(y_i, \mathbf{x}))$$

Learning

Learning = Maximum Likelihood Estimation

$$\theta^{\star} = \arg \max_{\theta} \mathcal{L}(\theta) = \arg \max_{\theta} \sum_{m=1}^{M} \log(\Pr_{\theta}(\mathbf{y}^{m} | \mathbf{x}^{m}))$$

Sequential dependency model

Full dependency model

 Dynamic programming (L-BFGS)

- Solution space is huge and thus calculation of Z(x) is difficult
- Approximate with GibbsSampling

Prediction

Find most likely label sequence

$$\mathbf{y}^{\star} = \arg \max_{\mathbf{y}} \Pr_{\theta^{\star}}(\mathbf{y}|\mathbf{x})$$

Sequential dependency model

Full dependency model

Viterbi algorithm

- Solution space is huge
- Quadratic programming relaxation method (Ravikumar & Lafferty, 2006)

Major Features

Vertex Features				
ClickthroughRate	Whether clickthrough rate of			
(r_1, r_2)	document is in range of $[r_1, r_2]$			
DwellTime (t_1, t_2)	Whether time users spend on			
	document is in range of $[t_1, t_2]$			
LastClick (p_1, p_2)	Whether probability of docu-			
	ment's being the last click of ses-			
	sion is in range of $[p_1, p_2]$			
Edge Features				
ClickthroughRateDiff Whether the diff between cl				
(r_1, r_2)	through rates of two documents			
	is in range of $[r_1, r_2]$			
DwellTimeDiff $(t_1,$	Whether the diff between times			
$t_2)$	users spends on two documents			
	is in range of $[t_1, t_2]$			
LastClickDiff (p_1, p_2)	Whether the diff between prob-			
	abilities of two documents' be-			
	ing the last click of a session is			
in range of $[p_1, p_2]$				

Experiment on Label Prediction

Data Set

- Search log of a commercial search engine in Oct. 2008
- 1500 queries, 141 million impressions and 129 million clicks
- Query-document pairs judged by 3 well-trained judges
- 900 queries for training, 600 queries for testing

Baseline method

- Non-dependency model (Carterette & Jones 2007)
- $\Pr(\mathbf{y} | \mathbf{x}) = p(y_1 | x_1) p(y_2 | x_2) ... p(y_n | x_n)$

Evaluation measure

• Correlation between predicted labels and human labels

Experimental Result on Label Prediction

Comparison between Three Methods

Model	Correlation	Improvement
NDM	0.64	-
SDM	0.69	+7.8% *
FDM	0.74	+15.6%*

NDM: non-dependency model

SDM: sequential dependency model

FDM: full dependency model

- SDM and FDM outperform NDM
 - Considering conditional dependency is necessary
- FDM outperforms SDM
 - Increasing scope of dependency is necessary

Improving Training Data Quality Using Click-through Data

Labeling Error Creation

Judgment Error

Random error

- Caused by careless miss
- Equally change to other labels

Real error

- Caused by misunderstanding/ low proficiency
- More likely change to close labels
- Estimated from Mturk (low quality judgment)

Confusion Matrix estimated from Mturk

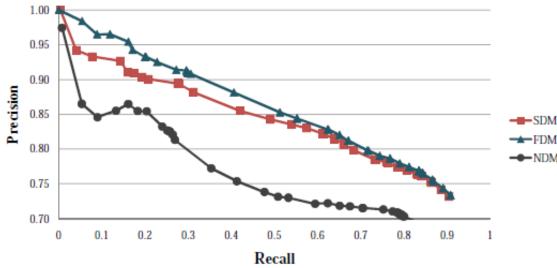
	Perfect	Excellent	Good	Fair	Bad
Perfect	55%	19%	15%	9%	2%
Excellent	10%	26%	26%	26%	12%
Good	7%	11%	25%	34%	23%
Fair	4%	9%	31%	23%	33%
Bad	5%	3%	8%	20%	64%

Labeling Error Detection

Detection Method

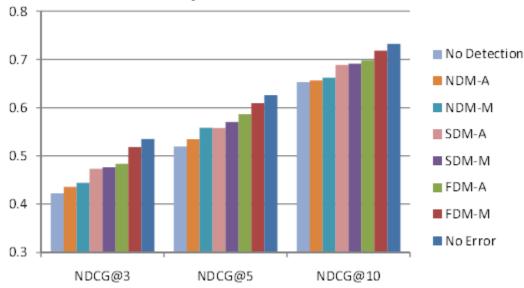
Predict labels using click-through data If P(predicted label|current label)>threshold, then detect as error

Experimental Result



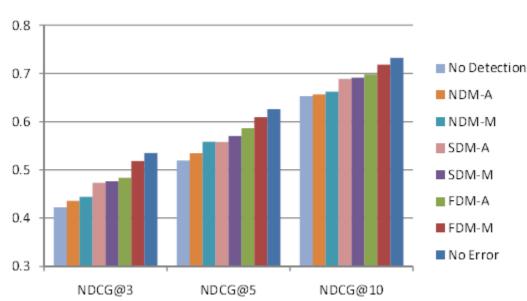
- FDM and SDM outperform NDM
- FDM outperforms SDM

Experimental Results on Labeling Error Detection

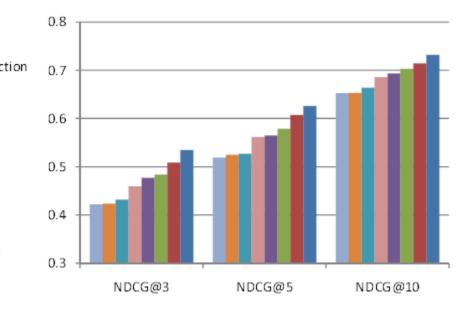


on 0.7 0.6 0.5 0.4 0.4 0.3 NDCG@3 NDCG@5 NDCG@10

RankSVM (detection precision = 0.7)



RankSVM (0.8)



SVM-MAP (detection precision = 0.7)

SVM-MAP (0.8)

Conclusion

- Labeling errors in training data significantly degrade performance of learning to rank
- Automatically predicting relevance labels using click-through data
 - Sequential dependency model
 - Full dependency model
- Error correction significantly improves performance of learning to rank

Thank you!