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Backgrounds

Learning to rank in web search

A supervised machine learning framework for ranking

e relevance labeled data
{(Xiayi) ?:1
e a loss function
L({(wi, f(x:))}i21)

e train a ranking function f via optimizing the loss
o e.g., functional gradient descent
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Various loss functions have been proposed

pointwise loss functions
e treat each example individually
@ e.g., regression, etc.
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Various loss functions have been proposed

pointwise loss functions
e treat each example individually

@ e.g., regression, etc.

pairwise loss functions
e focus on relative orderings of pairs
e e.g., GBRank, RankNet, RankBoost, etc.

listwise loss functions
e treat the whole list jointly
e e.g., LambdaRank, SoftRank, SmoothDCG, etc.
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Does one approach dominate others?

Common wisdom: pointwise < pairwise < listwise

e But, listwise loss functions also have some caveats
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"possible scores from ranking function
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“may not assign similar scores to similarly relevant documents”
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Can we mix the different approaches?

|deally, we would like to train a function to

Bad Fair Good Excellent Perfect

—000000——00000—0————0WO-0-0—0000-0———0-—000000———————>
ranking scores

e separate documents with different relevance
o cluster documents with similar relevance
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IntervalRank

© IntervalRank
@ Loss function via isotonic regression
o Efficient implementation
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IntervalRank Loss function via isotonic regression

Our approach

@ Define a loss function via isotonic regression

@ Reformulate the problem to efficiently find the
gradient
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IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

Loss = minimum total efforts to make scores satisfy the
constraints
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IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

total effort = 67 + 03 + 6% + 07 + 02
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IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

total effort = 6% + 05 + 05 + 63
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IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

Loss = “minimum’” total effort

L({(yi, f(x))}i21) = 5161%11 16]/3,  where § € R™ satisfies

f(xi) 4+ 0; — f(x5) — 6; > Ay for all (i, j) €{ordered pairs}
FG) + 85 — f(x5) — 651 < &, for all (i, j) €]tied pairs}
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Loss function via isotonic regression

Loss = “minimum’” total effort

L({(yi, f(x))}i21) = gn}%n 16]/3,  where § € R™ satisfies
e n

f(xi) 4+ 0; — f(x5) — 6; > Ay for all (i, j) €{ordered pairs}

FOxi) + 8 — F(ox5) — 85| < &, for all (5, ) €{tied pairs)

o first proposed by [Zheng et.al 2008]

e pairwise constraints and listwise objective
o obtain the optimum ¢* and use it as a functional gradient for f(x;)

e problems:

e no formal proof for functional gradient
e not practical - quadratic program (QP) with O(n?) complexity
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valRank Loss function via isotonic regression

The optimum 5* is the functional gradient

We prove that
5t = OL({(yi, f(x))}iey)
’ of (i)

e Lemma 2 in the paper
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We can reduce the number of variables

o original QP has n variables and O(n?) constraints
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IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
@ observation:
@ J satisfying constraints with equality is enough
Aij =vyi — vy,
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IntervalRank Efficient implementation

We can reduce the number of variables

e original QP has n variables and O(n?) constraints
e observation:

@ J satisfying constraints with equality is enough
@ relevance grade interval {[{,, u4]} can be found first, then obtain ¢
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IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
e observation:
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IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
@ observation:

@ ¢ satisfying constraints with equality is enough
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Ag-gH
-—
gg fg-l—l
- -—>
ly g b1 Ut f(xi)
01 =0

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 13 /21



IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
@ observation:

@  satisfying constraints with equality is enough
@ relevance grade interval {[¢,,uy]} can be found first, then obtain §

A.q,xH—l
>

£g §g+1

—  — —>

y Ug : ;fwl g1 f(xi)

0a = Lyp1 — f(xa)

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 13 /21



IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
@ observation:

@  satisfying constraints with equality is enough
@ relevance grade interval {[¢,,uy]} can be found first, then obtain §

Ag gt
>
5{/ §g+1
> >
Ly Ug lorr  Ugpr f(xi)

0a = Lyp1 — f(xa)

e finding minimum efforts * can be obtained from the optimum
intervals {[(, u;]} that lead to them

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 13 /21



IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
@ observation:

@  satisfying constraints with equality is enough
@ relevance grade interval {[¢,,uy]} can be found first, then obtain §

A.q,xH—l
>

£g §g+1

—  — —>

y Ug : ;fwl g1 f(xi)

0a = Lyp1 — f(xa)

e finding minimum efforts * can be obtained from the optimum
intervals {[(, u;]} that lead to them

° 0f = min{ f(x;) — u},0}

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 13 /21



IntervalRank Efficient implementation

We can reduce the number of variables

o original QP has n variables and O(n?) constraints
@ observation:

@  satisfying constraints with equality is enough
@ relevance grade interval {[¢,,uy]} can be found first, then obtain §

A.q,xH—l
>

£g §g+1
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y Ug : ;fwl g1 f(xi)

0a = Lyp1 — f(xa)

e finding minimum efforts * can be obtained from the optimum
intervals {[(, u;]} that lead to them

o 07 = max {f; — f(x;), min{ f(x:) - up,0}}
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IntervalRank Efficient implementation

Equivalent problem does not depend on n

Loss function

L({(ys, f(xi)) i) = min > > [(bg = F(xi)) + (f(xi) —ug)3 ],

o uol} i 51
where {[(,, u,|} satisfy

by <ug <Ly +&, forall g e {relevance grades}

lyr1 —ug > Agi1g, forall g e {relevance grades}

e problem reduced to O(1) variables and O(1) constraints
@ no longer a QP, but we can still solve this efficiently
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IntervalRank Efficient implementation

We can solve with O(n log n) complexity

Apply techniques from convex optimization

e log-barrier method
e remove inequality constraints via log-barriers
e L-BFGS or conjugate gradient (CG) method

o need to compute the objective and the gradient for each {/,, u,}
e sorting of sums of f(x;) and f(x;)? will do (details in the paper)
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IntervalRank Efficient implementation

Summary of the algorithm

@ Find the intervals that lead to the “minimum efforts”

Bad Fair Good Excellent Perfect

[ ] [ ] [ ] [ ] [ ] 5
1 I 1 | 1 I 1 | 1 |

ranking scores

@ Regress on the intervals to find {6*}; and do
functional gradient descent

@ Also add (pointwise) regression loss

n

L({(n, FO) V) = 510° 3 + 5 S0 — F(x0))

=1
o gives absolute score information
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Experimental results

© Experimental results
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LETOR 3.0 OHSUMED data

Data
@ 106 queries, 16,140 query-document pairs

@ 5-fold cross validation with % for training, % for validation, % for test

Functional gradient boosting trees
@ slight variation: added slack variables for the constraints

@ parameters: 125 treees, 20 nodes per tree, shrinkage, A1, Az, A
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LETOR 3.0 OHSUMED data

o NDCG@k results

Algorithms N@1 N@2 N@3 N©4 N@5

RankBoost 0.4632 | 0.4504 | 0.4555 | 0.4543 | 0.4494
RankSVM 0.4958 | 0.4331 | 0.4207 | 0.4240 | 0.4164
FRank 0.5300 | 0.5008 | 0.4812 | 0.4694 | 0.4588
ListNet 0.5326 | 0.4810 | 0.4732 | 0.4561 | 0.4432

AdaRank.MAP 0.5388 | 0.4789 | 0.4682 | 0.4721 | 0.4613
AdaRank.NDCG || 0.5330 | 0.4922 | 0.4790 | 0.4688 | 0.4673
IntervalRank 0.5628 | 0.5448 | 0.4900 | 0.4703 | 0.4609
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LETOR 3.0 OHSUMED data

@ Precision@k results

Algorithms Po1 P@2 P@3 P4 P@5 MAP
RankBoost 0.5576 | 0.5481 | 0.5609 | 0.5580 | 0.5447 || 0.4411
RankSVM 0.5974 | 0.5494 | 0.5427 | 0.5443 | 0.5319 || 0.4334
FRank 0.6429 | 0.6195 | 0.5925 | 0.5840 | 0.5638 || 0.4439
ListNet 0.6524 | 0.6093 | 0.6016 | 0.5745 | 0.5502 || 0.4457

AdaRank.MAP 0.6338 | 0.5959 | 0.5895 | 0.5887 | 0.5674 || 0.4487
AdaRank.NDCG || 0.6719 | 0.6236 | 0.5984 | 0.5838 | 0.5767 | 0.4498
IntervalRank 0.6892 | 0.6522 | 0.5768 | 0.5556 | 0.5488 || 0.4466
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Commercial search engine data

Data
@ training set : 8,180 queries, 341,300 query-document pairs
o test set: 916 queries, 32,008 query-document pairs

@ 5 grade relevance judgments:
G = {Perfect, Excellent, Good, Fair, Bad}

Functional gradient boosting trees

@ slight variation: added slack variables for the constraints

@ parameters: 600 treees, 20 nodes per tree, shrinkage, A1, A2, A
Comparing schemes

e GBDT (pointwise), GBRank (pairwise), ListMLE (listwise)

@ with or without additional regression term
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Experimental results

Commercial search engine data

@ running time of IntervalRank was in the same range with others
e NDCGO1
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Experimental results

Commercial search engine data

@ running time of IntervalRank was in the same range with others
e NDCG@5
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we gain up to 1% over other methods!
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