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Backgrounds

Learning to rank in web search

A supervised machine learning framework for ranking

relevance labeled data

{(xi, yi)}ni=1

a loss function

L
(
{(yi, f(xi))}ni=1

)
train a ranking function f via optimizing the loss

e.g., functional gradient descent
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Backgrounds

Various loss functions have been proposed

pointwise loss functions
treat each example individually

e.g., regression, etc.

pairwise loss functions
focus on relative orderings of pairs

e.g., GBRank, RankNet, RankBoost, etc.

listwise loss functions
treat the whole list jointly

e.g., LambdaRank, SoftRank, SmoothDCG, etc.
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Backgrounds

Does one approach dominate others?

Common wisdom: pointwise � pairwise � listwise

But, listwise loss functions also have some caveats

ranking scores
"initial scores for training examples"

ranking scores

Bad Fair Good Excellent Perfect

"possible scores from ranking function 
trained from the listwise loss"

“may not assign similar scores to similarly relevant documents”
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Backgrounds

Can we mix the different approaches?

Ideally, we would like to train a function to

ranking scores

Bad Fair Good Excellent Perfect

separate documents with different relevance

cluster documents with similar relevance
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IntervalRank Loss function via isotonic regression

Our approach

1 Define a loss function via isotonic regression

2 Reformulate the problem to efficiently find the
gradient
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IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

Loss = minimum total efforts to make scores satisfy the
constraints

∆ij = yi − yj

ξg+1ξg

f(xi)

− ≥ ∆ij = yi − yj

− ≤ ξg+1

− ≤ ξg

| |
| |

f(xi)

ξg+1ξg

∆ij = yi − yj

δ1 δ2 δ3
δ4

f(xi)

ξg+1ξg

∆ij = yi − yj

δ1 δ2 δ3
δ4

δ5

f(xi)

ξg+1ξg

ug !g+1 ug+1!g

∆g,g+1

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 10 / 21



IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

total effort = δ2
1 + δ2

2 + δ2
3 + δ2

4 + δ2
5

∆ij

ξg+1ξg

f(xi)

− ≥ ∆ij

− ≤ ξg+1

− ≤ ξg

| |
| |

f(xi)

ξg+1ξg

∆ij

δ1 δ2 δ3
δ4

f(xi)

ξg+1ξg

∆ij

δ1 δ2 δ3
δ4

δ5

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 10 / 21



IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

total effort = δ2
1 + δ2

2 + δ2
3 + δ2

4

∆ij

ξg+1ξg

f(xi)

− ≥ ∆ij

− ≤ ξg+1

− ≤ ξg

| |
| |

f(xi)

ξg+1ξg

∆ij

δ1 δ2 δ3
δ4

f(xi)

ξg+1ξg

∆ij

δ1 δ2 δ3
δ4

δ5

Taesup Moon (Yahoo! Labs) WSDM 2010 Feb 5, 2010 10 / 21



IntervalRank Loss function via isotonic regression

Loss function via isotonic regression

Loss = “minimum” total effort

L
(
{(yi, f(xi))}ni=1

)
= min

δ∈Rn
‖δ‖22, where δ ∈ Rn satisfies

f(xi) + δi − f(xj)− δj ≥ ∆ij for all (i, j) ∈{ordered pairs}
|f(xi) + δi − f(xj)− δj | ≤ ξgi for all (i, j) ∈{tied pairs}

first proposed by [Zheng et.al 2008]

pairwise constraints and listwise objective
obtain the optimum δ∗ and use it as a functional gradient for f(xi)

problems:

no formal proof for functional gradient
not practical - quadratic program (QP) with O(n3) complexity
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IntervalRank Loss function via isotonic regression

The optimum δ∗ is the functional gradient

We prove that

δ∗i =
∂L
(
{(yi, f(xi))}ni=1

)
∂f(xi)

Lemma 2 in the paper
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IntervalRank Efficient implementation

We can reduce the number of variables

original QP has n variables and O(n2) constraints

observation:
1 δ satisfying constraints with equality is enough

2 relevance grade interval {[`g, ug]} can be found first, then obtain δ

finding minimum efforts δ∗ can be obtained from the optimum
intervals {[`∗g, u∗g]} that lead to them

δ∗i =

max
{
`∗g − f(xi),

min{f(xi)− u∗g, 0}

}
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IntervalRank Efficient implementation

Equivalent problem does not depend on n

Loss function

L
(
{(yi, f(xi))}ni=1

)
= min
{[`g ,ug ]}

∑
g∈G

∑
i∈Sg

[
(`g − f(xi))2+ + (f(xi)− ug)2+}

]
,

where {[`g, ug]} satisfy

`g ≤ ug ≤ `g + ξg, for all g ∈ {relevance grades}
`g+1 − ug ≥ ∆g+1,g, for all g ∈ {relevance grades}

problem reduced to O(1) variables and O(1) constraints

no longer a QP, but we can still solve this efficiently
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IntervalRank Efficient implementation

We can solve with O(n log n) complexity

Apply techniques from convex optimization

log-barrier method
remove inequality constraints via log-barriers

L-BFGS or conjugate gradient (CG) method
need to compute the objective and the gradient for each {`g, ug}
sorting of sums of f(xi) and f(xi)2 will do (details in the paper)
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IntervalRank Efficient implementation

Summary of the algorithm

1 Find the intervals that lead to the “minimum efforts”

ranking scores

Bad Fair Good Excellent Perfect

2 Regress on the intervals to find {δ∗}ni=1 and do
functional gradient descent

3 Also add (pointwise) regression loss

L
(
{(yi, f(xi))}ni=1

)
=

1
2
‖δ∗‖22 +

λ

2

n∑
i=1

(yi − f(xi))2

gives absolute score information
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Experimental results

LETOR 3.0 OHSUMED data

Data

106 queries, 16,140 query-document pairs

5-fold cross validation with 3
5 for training, 1

5 for validation, 1
5 for test

Functional gradient boosting trees

slight variation: added slack variables for the constraints

parameters: 125 treees, 20 nodes per tree, shrinkage, λ1, λ2, λ
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Experimental results

LETOR 3.0 OHSUMED data

NDCG@k results

Algorithms N@1 N@2 N@3 N@4 N@5
RankBoost 0.4632 0.4504 0.4555 0.4543 0.4494
RankSVM 0.4958 0.4331 0.4207 0.4240 0.4164
FRank 0.5300 0.5008 0.4812 0.4694 0.4588
ListNet 0.5326 0.4810 0.4732 0.4561 0.4432
AdaRank.MAP 0.5388 0.4789 0.4682 0.4721 0.4613
AdaRank.NDCG 0.5330 0.4922 0.4790 0.4688 0.4673
IntervalRank 0.5628 0.5448 0.4900 0.4703 0.4609
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Experimental results

LETOR 3.0 OHSUMED data

Precision@k results

Algorithms P@1 P@2 P@3 P@4 P@5 MAP
RankBoost 0.5576 0.5481 0.5609 0.5580 0.5447 0.4411
RankSVM 0.5974 0.5494 0.5427 0.5443 0.5319 0.4334
FRank 0.6429 0.6195 0.5925 0.5840 0.5638 0.4439
ListNet 0.6524 0.6093 0.6016 0.5745 0.5502 0.4457
AdaRank.MAP 0.6338 0.5959 0.5895 0.5887 0.5674 0.4487
AdaRank.NDCG 0.6719 0.6236 0.5984 0.5838 0.5767 0.4498
IntervalRank 0.6892 0.6522 0.5768 0.5556 0.5488 0.4466
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Experimental results

Commercial search engine data

Data

training set : 8,180 queries, 341,300 query-document pairs

test set: 916 queries, 32,008 query-document pairs

5 grade relevance judgments:
G = {Perfect, Excellent, Good, Fair, Bad}

Functional gradient boosting trees

slight variation: added slack variables for the constraints

parameters: 600 treees, 20 nodes per tree, shrinkage, λ1, λ2, λ

Comparing schemes

GBDT (pointwise), GBRank (pairwise), ListMLE (listwise)

with or without additional regression term
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Experimental results

Commercial search engine data

running time of IntervalRank was in the same range with others

NDCG@1
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Experimental results

Commercial search engine data

running time of IntervalRank was in the same range with others

NDCG@5
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Experimental results

Commercial search engine data

running time of IntervalRank was in the same range with others

NDCG@5
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we gain up to 1% over other methods!
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