

COLLECTING THE DOTS | CONNECTING THE DOTS

The Patient of the Future
MIT Technology Review, 2012

What if we could automate this *sense making* ability?

... and do it *efficiently* and at *scale*

An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-constrained Devices

Cory Henson, Krishnaprasad Thirunarayan, Amit Sheth

<u>Kno.e.sis</u> – Ohio Center of Excellence in Knowledge-enabled Computing Wright State University, Dayton, OH, USA

50 Billion Things by 2020 (Cisco)

BUT, how do we *make sense* of the resulting avalanche of sensor data?

People are good at *making sense* of sensory input

What can we learn from cognitive models of perception?

The key ingredient is prior knowledge

Perception Cycle*

The Web is becoming a global knowledge base

Prior knowledge on the Web

V

W3C Semantic Sensor Network (SSN) Ontology

Bi-partite Graph

Prior knowledge on the Web

W3C Semantic Sensor Network (SSN) Ontology

Bi-partite Graph

Explanation

Explanation is the act of choosing the objects or events that best account for a set of observations; often referred to as hypothesis building

Explanation

Explanation is the act of choosing the objects or events that best account for a set of observations; often referred to as hypothesis building

Inference to the best explanation

 In general, explanation is an **abductive** problem; and hard to compute

Finding the sweet spot between abduction and OWL

 Single-feature assumption* enables use of OWL-DL deductive reasoner

Explanation

Explanatory Feature: a feature that explains the set of observed properties

ExplanatoryFeature \equiv \exists ssn:isPropertyOf⁻. $\{p_1\}$ \sqcap ... \sqcap \exists ssn:isPropertyOf⁻. $\{p_n\}$

Discrimination is the act of finding those properties that, if observed, would help distinguish between multiple explanatory features

Expected Property: would be explained by every explanatory feature

ExpectedProperty $\equiv \exists ssn: isPropertyOf. \{f_1\} \sqcap ... \sqcap \exists ssn: isPropertyOf. \{f_n\}$

Not Applicable Property: would not be explained by any explanatory feature

NotApplicableProperty = $\neg \exists ssn: isPropertyOf. \{f_1\} \sqcap ... \sqcap \neg \exists ssn: isPropertyOf. \{f_n\}$

Discriminating Property: is neither expected nor not-applicable

DiscriminatingProperty $\equiv \neg ExpectedProperty \sqcap \neg NotApplicableProperty$

Our Motivation

kHealth: knowledge-enabled healthcare

Through physical monitoring and analysis, our cellphones could act as an early warning system to detect serious health conditions

canary in a coal mine

How do we implement machine perception *efficiently* on a resource-constrained device?

Use of OWL reasoner is resource intensive (especially on resource-constrained devices), in terms of both memory and time

- Runs out of resources with prior knowledge >> 15 nodes
- Asymptotic complexity: O(n³)

Approach 1: Send all sensor observations to the cloud for processing

Approach 2: downscale semantic processing so that each device is capable of machine perception

intelligence at the edge

Efficient execution of machine perception

Use *bit vector encodings and their operations* to encode prior knowledge and execute semantic reasoning

Lifting and lowering knowledge

Translate prior knowledge, observations, and explanations between SW and bit vector representation

	Hypertension	Hyperthyroidism	Pulmonary Edema
elevated blood pressure	1	1	1
clammy skin	0	1	0
palpitations	1	1	0

Explanation: efficient algorithm

INTUITION: The strategy employed relies on the use of the bit vector AND operation to discover and dismiss those features that cannot explain the set of observed properties.

Discrimination: efficient algorithm

INTUITION: The strategy employed relies on the use of the bit vector AND operation to discover and assemble those features that discriminate between the explanatory features

Evaluation on a mobile device

Evaluation on a mobile device

Evaluation on a mobile device

3 ideas to takeaway

1 Translate low-level data to high-level knowledge

Machine perception can be used to convert low-level sensory signals into high-level knowledge useful for decision making

2 Prior knowledge is the key to perception

Using SW technologies, machine perception can be formalized and integrated with prior knowledge on the Web

3 Intelligence at the edge

By downscaling semantic inference, machine perception can execute efficiently on resource-constrained devices

Thank you.

An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-constrained Devices

Cory Henson, Krishnaprasad Thirunarayan, Amit Sheth <u>Kno.e.sis</u> – Ohio Center of Excellence in Knowledge-enabled Computing

