Large Linear Classification When Data

Cannot Fit In Memory

Hsiang-Fu Yu

Department of Computer Science
National Taiwan University

Joint work with C.-J. Hsieh, K.-W. Chang, and C.-J. Lin
July 27, 2010

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 1/35

@ Introduction

@ A Block Minimization Framework for Linear SVMs
@ Implementations for SVM

@ Techniques to Reduce the Training Time

@ Other Functionalities

@ Experiments

@ Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 2/

@ Introduction

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 3/

Linear Classification

@ Recently linear classification is a popular research
topic

@ By linear we mean that kernel is not used

@ Though linear may not be as good as nonlinear

e for some problems:
accuracy by linear is as good as nonlinear, and
training and testing are much faster

@ This talk addresses on large linear classification

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 4/

Existing approaches for large linear classification:
@ Data smaller than memory:
Efficient methods are well-developed
@ Data beyond disk size:
Usually handled in a distributed way
Can we have something in the between?
@ A simple setting
memory < data < disk
@ Ferris and Munson (2003) proposed a method,
but only for data with # features < # instances

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 5/35

When Data Cannot Fit In Memory

LIBLINEAR on a machine with 1 GB memory:

1600

1400

—_
Lo
=
f=}

—
(=]
=
=

800

Time (sec.)

600
400

200

0.0 0.2 0.4 0.8 1.0

Size ((%]%)
Disk swap causes lengthy training time

Hsiang-Fu Yu (National Taiwan Univ.)

June 02, 2010 6/

The Goal

Goal: construct large linear classifiers for ordinary users
on a single machine

@ memory < data < disk
@ Sub-sampling causes lower accuracy

Requirement: must be simple so that it supports
@ Multi-class classification
@ Parameter selection,

@ Other functionalities

o
P

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 7/35

Modeling the Training Time

train time = time to train in-memory data +
time to access data from disk

@ Now need to pay attention to the second part

@ Loading time may dominate the training time
even data can fit in memory

@ > ./liblinear-1.51/train rcvl_test.binary
rcvl_test.binary: > half millions of documents
Loading time: > 1 minute
Computing time: < 5 seconds

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 8/

Conditions for a Viable Method

@ Each optimization step reads a continuous chunk of
training data.

© The optimization procedure converges toward the
optimum.

© The number of optimization steps should not be too
large.

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 9/

Linear SVM as the Linear Classifier

We consider SVM as the linear classifier

e Training data {(y;,x;)},, xi € R", y; = +1

@ n: # of features, I: # of data

@ Primal SVM:

1 4 ! T
min §w w + Czizl max (O, 1—yw x,-)

w

@ Dual SVM:
1
min EaTQa —e'
subjectto 0<a; < C,Vi,

ee=[1,...,17, Q; = yiyx/x
@ o € R, each «; corresponds to x;

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 10 / 35

@ A Block Minimization Framework for Linear SVMs

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 11 /35

A Block Minimization Framework

Algorithm 1

1. Split {1,...,/} to By,..., B, such that B, fits in
memory, and store data into m files accordingly.
2. Set initial o or w
3. For k=1,2,... (outer iteration)
Forj=1,...,m (inner iteration)
(a) Read x,,Vr € B; from disk
(b) Conduct operations on {x, | r € B;}
(c) Update ax or w

Here we do not specify operations on each block

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 12 / 35

Block Minimization

A classical optimization method
@ Block of variables
@ Widely used in nonlinear SVM

@ Here need a connection between a block of data and
a block of variables

In the situation, data > memory
@ to avoid random access on the disk
@ cannot use holistic methods to select block variables
@ Bi,...,By: fixed partition of {1,...,/}

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 13 / 35

Number of Blocks and Block Size

How to decide m (# of blocks)

@ Assume all blocks have similar size |B|

@ # blocks: m = ﬁ
Block size

e Cannot be too large: each B; must fit in memory

@ Cannot be too small: should be as large as possible
Total time for an outer iteration:

(To(B) + To(1B)) x &~ m=1&
@ T,(|B|): time cost of one inner iteration in memory
e T,(|B]|): time cost of reading B from disk

@ Both T,,(|B|) and T4(|B]) are functions of |B|

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 14 / 35

Block Size Should Be Large

Total time for an outer iteration:
(T (|B\)+ T4(1B]) % 1
Past, T,,(|B|) onIy m(|B|) more than linear to |B|
e Total time = T,,(|B|) x |B|
@ previous SVM works: smaller |B| is better
Now, T4(|B]) added: T4(|B]|) : initial cost + O(|B|)
e Total reading time = initial cost x ﬁ + 0(1)

@ Larger |B| is better (but can’t exceed memory)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 15 / 35

@ Implementations for SVM

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 16 / 35

Sub-problem for Dual SVM

Let f() be the dual function:

1
fla) = —aTQa —e'a

Each block of variables corresponds to a block of data

min f(a +d)
(1)
s.t. dgjzoandOSa;—l—digC, Vi € B;

o B ={1,...,/}\B;; only ag, is changed

@ (1) involves all data; handled by some techniques
(details omitted)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 17 / 35

An Implementation for Dual SVM

Algorithm 2 A special case of Algorithm 1
1. Split {1,...,/} to By,..., B, and store data to m

)

files
2. Set initial ¢ and w
3. For k=1,2,... (outer iteration)
For j=1,...,m (inner iteration)

(a) Read x,/, Vr € B; from disk
(b) Approximately solve the
sub-problem to obtain dj .

(c) Update a; - aeg; + dg and w

18 / 35

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010

Solving Sub-problem By LIBLINEAR

Any bound-constrained method can be used

@ We consider LIBLINEAR: a coordinate descent
method

Two-level block minimization

@ Used in some algorithms (e.g., Memisevic, 2006;
Pérez-Cruz et al., 2004; Riping, 2000)

But here inner = memory, outer = disk

@ An approximate solution for the sub-problem in
practice

Sub-problem stopping criterion and convergence are

issues

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 19 / 35

Sub-problem Stopping Condition and

Overall Convergence

Two approaches
© A fixed number of passes to all variables in B;
Need to decide the number of passes
@ Gradient-based stopping condition

Easy to know how accurate the sub-problem’s
solution is; we use the one in LIBLINEAR

Convergence holds for both conditions (details omitted)

S

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010

Block Minimization for Primal SVM

Let f7 be the primal function
1 /
P T T
f(w) = SWw + CZ/:1 max (0,1 — yw'x;)

A block of primal variable w
@ corresponds to a subset of features
@ no connection to a block of data
Stochastic gradient descent (SGD) approach
@ For each update only a block of data is needed

@ We use Pegasos (Shalev-Shwartz et al., 2007)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 21 /35

Pegasos for Each Block

Algorithm 3 A special cases of Algorithm 1
1. Split {1,...,/} to By, ..., B, and store data into m

files accordlngly.
2. t=0and initialw =10
3. Fork=1,2,...
Forj=1,..., m
(a) Find a partltlon of B;: le, ..., Bf
(b) For r =1.
(b.1) Apply Pegasos update on B/
(b.2) t <+ t+1

= 1: only one update on the whole block
B|: |B| updates, one for each data instance

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 22 /35

@ Techniques to Reduce the Training Time

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 23 /35

Techniques To Reduce the Training Time

Data compression for disk reading time T4(|B|)
@ Except initial time, T,4(|B]) o< data size |B|

@ Data compression effectively reduces the disk
reading time (Details not shown)

Initial Split of Data

o If original data ordered by labels

a whole block with same label

= slow convergence

@ A random split is needed

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 24 / 35

Techniques To Reduce the Training Time

Two tasks in the beginning:
@ random split
@ data compression
Data > memory:
@ avoid re-reading data from disk
@ A carefully design ensures

Random split+data compression by going data only
once

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 25 /35

@ Other Functionalities

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 26 / 35

Other Functionalities

Due to the simplicity and block design, we can support
@ Cross validation
@ Multi-class classification
@ Incremental/Decremental setting

Details omitted here.

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 27 / 35

@ Experiments

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 28 / 35

Data and Environment

Data set |/ (data) n (features) Mem
yahoo-korea | 460,554 3,052,939 2.5GB
webspam 350,000 16,609,143 20.8GB
epsilson 500,000 2,000 16.0GB

@ 64-bit machine with 1 GB RAM
Data 20 times larger

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 29 / 35

Compared Methods

BLOCK-x-%: Block minimization methods.

1. BLOCK-L-N: Solving dual. LIBLINEAR goes through
each block /V rounds; N =1, 10, 20.

2. BLOCK-L-D: Solving dual. LIBLINEAR default
stopping condition for each block.

3. BLOCK-P-B: Solving primal. Pegasos on each whole
block (one update).

4. BLOCK-P-I: Solving primal. Pegasos on each data
instance of the block (|B| updates).

5. LIBLINEAR: The standard LIBLINEAR without any
modification.

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 30/ 35

Function Value Reduction

webspam yahoo-korea

104 103
3 = BLOCK-L-D 3 = BLOCK-L-D
g 107 11s BLOCK-L-1 £ 111 BLOCK-L-1
5 B == BLOCK-L-10 5 102 == BLOCK-L-10
=) ER mi BLOCK-L-20 || &5 i BLOCK-L-20
B 10? B BLOCK-P-I ° BLOCK-P-I
3 E 11+ BLOCK-P-B 2 10 11 BLOCK-P-B
= 10! E LIBLINEAR || & LIBLINEAR
> H >
g g 1
R =
=1 = S1n-1
121071 g 310
4 H G.J
2] 2
Sw02f i S0
D H Q
N ! I

10 107 o e 107 107

Time (sec.) Time (sec.)

Time for initial block split

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010

Function Value Reduction

webspam yahoo-korea
104 = 103
) == BLOCK-L-D 8 == BLOCK-L-D
5 107 e 11s BLOCK-L-1 g 11r BLOCK-L-1
= Ee == BLOCK-L-10 & 107 == BLOCK-L-10
& B &
g : © BLOCK-L20|| & ' BLOCK-L-20
8 102 B BLOCK-P-I ° : BLOCK-P-I
2 : o Brockpe || g 10 i1 BLOCK-P-B
= 10 LIBLINEAR || g LIBLINEAR
> = > H
g I
g 100 p=
2 2.1
S| 210
4 = G.)
2 H =
w102} = G107
10-3—= = 10-3L—= ,
108 104 107 102 103 10* 10°

Time (sec.)

Time (sec.)

Proposed methods are faster than LIBLINEAR

Hsiang-Fu Yu (National Taiwan Univ.)

June 02, 2010

Function Value Reduction

webspam Magnified view

104 = 104
g — BLOCKLD || g = BLOCK-L-D
g 11+ BLOCK-L-1 g , 11 BLOCK-L-1
£ 10 == BLOCK-L10|| & 10 3 == BLOCK-L-10
=) = © BLOCK-L-20|| & . R BLOCK-L-20
B 102 : BLOCK-P-I 8 102 o BLOCK-P-I
3 E 11+ BLOCK-P-B 2 Il 11 BLOCK-P-B
s 10! E LIBLINEAR || & 0t P
g 10 H g 10 %
g |3 :
£ 10 5 10
= g
=St S S0t
4 H Q.J
= E 2
Rl : 1072) NI A
D H T o . a2 .
=) & i o 4

1078 55— ~— " s 10775 - y

10 10 10 10 10
Time (sec.) Time (sec.)

BLOCK-P-x are worse than BLOCK-L-x

Hsiang-Fu Yu (National Taiwan Univ.)

June 02, 2010 32/35

Function Value Reduction

webspam Magnified view

104 104
] BLOCK-L-D] == BLOCK-L-D
g 18 + BLOCK-L-1 § 108 + BLOCK-L-1
= BLOCK-L-10|| & = BLOCK-L-10
& i BLOCK-L-20|| & N 1 BLOCK-L-20
| 102 BLOCK-P-I S 102 & BLOCK-P-I
3 + BLOCK-P-B 3 il + BLOCK-P-B
= 10t LIBLINEAR || & 10t
g 10 g 10
g g
g 10 g 100
=] =1
S0t -
<) [
2 2
=107 1072
D Q
= : %2 ~

1073 55— N—"" ! s 10705 4

10 10 10 10 10
Time (sec.) Time (sec.)

BLOCK-P-x are worse than BLOCK-L-x
BLOCK-P-B: applies only one update on each block

Information of a block underutilized

Hsiang-Fu Yu (National Taiwan Univ.)

June 02, 2010

Function Value Reduction

webspam Magnified view

104 — 104
8 : — BLOCK-LD || g == BLOCK-L-D
=1 3 H s BLOCK-L-1 =] 3 1 BLOCK-L-1
% 10 == BLOCK-L-10 % 10 == BLOCK-L-10
= wn BLOCK-L-20 || & i BLOCK-L-20
< 107 BLOCK-P-I S 10? BLOCK-P-I
3 1+ BLOCK-P-B g 111 BLOCK-P-B
= 10 LIBLINEAR || 5 101
g 10 g 10
g : g
g 1 g 10
<] H <
S-SR S Syt
[= Q.J
2 E &
z102) 5102
D H Q
& R =

1073 N—" 5 10700 v

10 10 10 10 10
Time (sec.) Time (sec.)

Due to long reading time: put more effort on each bIock

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 32/35

Other Experimental Results

Random split vs. Raw

' raw

§ BT TP ' random-split
50.8 ST rrorrs—
s

=]

Q

20.6

I

>

a

S

=

$0.4

£

g

£

éOQ

,,,,,,,,,,,
////////
..

OQ%OU 2200 2400 2600 2800‘ 3000

Time (sec.)

raw: Data are ordered according to labels
random split: Initial random split

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 33 /35

Other Experimental Results

Random split vs. Raw

I raw
§ yyyyy YR, : random-split
50_8 T rryrrrrrree—
=
T
Q
£0.6
I
>
a
.2
3
£0.4
2
g
2
5
£0.2
E o,

////////
..

02%00 2200 2400 2600 2800‘ 3000

Time (sec.)

Random split is useful

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 33 /35

Other Experimental Results

Random split vs. Raw Different block size
1.0 0.25
' raw — =40

g [y, | random-split 9 :
T R ronen| 020
£ £
< <
20.6 £0.15
g g
g 2
50.4 50.10
202 20.05
R &

(0,0 L w100 000 10 0.00 g

2000 2200 24(%0 26)300 2800 300 2000 2500 . 3000) 3500 400

ime (sec. ime (sec.

m: # of blocks = smaller m; should use larger |B|

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 33 /35

@ Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 34 /35

Conclusions

@ We have proposed methods to effectively handle
data 20 times larger than memory

@ Our implementation is available at:

http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/#large_linear_classification_
when_data_cannot_fit_in_memory

@ You can now train pretty large data on your laptop

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 35 /35

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory

	
	Introduction
	A Block Minimization Framework for Linear SVMs
	Implementations for SVM
	Techniques to Reduce the Training Time
	Other Functionalities
	Experiments
	Conclusions

