
Large Linear Classification When Data
Cannot Fit In Memory

Hsiang-Fu Yu

Department of Computer Science
National Taiwan University

Joint work with C.-J. Hsieh, K.-W. Chang, and C.-J. Lin

July 27, 2010

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 1 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 2 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 3 / 35

Linear Classification

Recently linear classification is a popular research
topic

By linear we mean that kernel is not used

Though linear may not be as good as nonlinear

for some problems:

accuracy by linear is as good as nonlinear, and

training and testing are much faster

This talk addresses on large linear classification

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 4 / 35

Motivation

Existing approaches for large linear classification:

Data smaller than memory:

Efficient methods are well-developed

Data beyond disk size:

Usually handled in a distributed way

Can we have something in the between?

A simple setting

memory < data < disk

Ferris and Munson (2003) proposed a method,

but only for data with # features � # instances

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 5 / 35

When Data Cannot Fit In Memory

LIBLINEAR on a machine with 1 GB memory:

Disk swap causes lengthy training time
Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 6 / 35

The Goal

Goal: construct large linear classifiers for ordinary users
on a single machine

Assumptions
memory < data < disk

Sub-sampling causes lower accuracy

Requirement: must be simple so that it supports
Multi-class classification

Parameter selection,

Other functionalities

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 7 / 35

Modeling the Training Time

train time = time to train in-memory data +

time to access data from disk

Now need to pay attention to the second part

Loading time may dominate the training time

even data can fit in memory

> ./liblinear-1.51/train rcv1_test.binary

rcv1 test.binary: > half millions of documents

Loading time: > 1 minute

Computing time: < 5 seconds
Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 8 / 35

Conditions for a Viable Method

1 Each optimization step reads a continuous chunk of
training data.

2 The optimization procedure converges toward the
optimum.

3 The number of optimization steps should not be too
large.

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 9 / 35

Linear SVM as the Linear Classifier

We consider SVM as the linear classifier
Training data {(yi , xi)}l1, xi ∈ Rn, yi = ±1
n: # of features, l : # of data
Primal SVM:

min
w

1

2
wTw + C

∑l

i=1
max

(
0, 1− yiw

Txi
)

Dual SVM:

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C ,∀i ,

e = [1, . . . , 1]T , Qij = yiyjxTi xj
α ∈ R l , each αi corresponds to xi

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 10 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 11 / 35

A Block Minimization Framework

Algorithm 1

1. Split {1, . . . , l} to B1, . . . ,Bm such that Bi fits in
memory, and store data into m files accordingly.

2. Set initial α or w
3. For k = 1, 2, . . . (outer iteration)

For j = 1, . . . ,m (inner iteration)
(a) Read xr ,∀r ∈ Bj from disk
(b) Conduct operations on {xr | r ∈ Bj}
(c) Update α or w

Here we do not specify operations on each block

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 12 / 35

Block Minimization

A classical optimization method

Block of variables

Widely used in nonlinear SVM

Here need a connection between a block of data and
a block of variables

In the situation, data > memory

to avoid random access on the disk

cannot use holistic methods to select block variables

B1, . . . ,Bm: fixed partition of {1, . . . , l}

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 13 / 35

Number of Blocks and Block Size

How to decide m (# of blocks)

Assume all blocks have similar size |B |
blocks: m = l

|B|
Block size

Cannot be too large: each Bj must fit in memory

Cannot be too small: should be as large as possible

Total time for an outer iteration:
(Tm(|B |) + Td(|B |))× l

|B| m = l
|B|

Tm(|B |): time cost of one inner iteration in memory

Td(|B |): time cost of reading B from disk

Both Tm(|B |) and Td(|B |) are functions of |B |
Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 14 / 35

Block Size Should Be Large

Total time for an outer iteration:
(Tm(|B |) + Td(|B |))× l

|B|
Past, Tm(|B |) only: Tm(|B |) more than linear to |B |

Total time = Tm(|B |)× l
|B|

previous SVM works: smaller |B | is better

Now, Td(|B |) added: Td(|B |) : initial cost + O(|B |)
Total reading time = initial cost× l

|B| + O(1)

Larger |B | is better (but can’t exceed memory)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 15 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 16 / 35

Sub-problem for Dual SVM

Let f (α) be the dual function:

f (α) ≡ 1

2
αTQα− eTα

Each block of variables corresponds to a block of data

min
dBj

f (α + d)

s.t. dB̄j
= 0 and 0 ≤ αi + di ≤ C , ∀i ∈ Bj

(1)

B̄j = {1, . . . , l}\Bj ; only αBj
is changed

(1) involves all data; handled by some techniques
(details omitted)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 17 / 35

An Implementation for Dual SVM

Algorithm 2 A special case of Algorithm 1

1. Split {1, . . . , l} to B1, . . . ,Bm and store data to m
files

2. Set initial α and w
3. For k = 1, 2, . . . (outer iteration)

For j = 1, . . . ,m (inner iteration)
(a) Read xr ,∀r ∈ Bj from disk
(b) Approximately solve the

sub-problem to obtain d∗Bj
.

(c) Update αBj
← αBj

+ d∗Bj
and w

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 18 / 35

Solving Sub-problem By LIBLINEAR

Any bound-constrained method can be used

We consider LIBLINEAR: a coordinate descent
method

Two-level block minimization

Used in some algorithms (e.g., Memisevic, 2006;
Pérez-Cruz et al., 2004; Rüping, 2000)

But here inner ⇒ memory, outer ⇒ disk

An approximate solution for the sub-problem in
practice

Sub-problem stopping criterion and convergence are
issues

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 19 / 35

Sub-problem Stopping Condition and
Overall Convergence

Two approaches
1 A fixed number of passes to all variables in Bj

Need to decide the number of passes
2 Gradient-based stopping condition

Easy to know how accurate the sub-problem’s
solution is; we use the one in LIBLINEAR

Convergence holds for both conditions (details omitted)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 20 / 35

Block Minimization for Primal SVM

Let f P be the primal function

f P(w) =
1

2
wTw + C

∑l

i=1
max

(
0, 1− yiw

Txi
)

A block of primal variable w

corresponds to a subset of features

no connection to a block of data

Stochastic gradient descent (SGD) approach

For each update only a block of data is needed

We use Pegasos (Shalev-Shwartz et al., 2007)

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 21 / 35

Pegasos for Each Block

Algorithm 3 A special cases of Algorithm 1
1. Split {1, . . . , l} to B1, . . . ,Bm and store data into m

files accordingly.
2. t = 0 and initial w = 0
3. For k = 1, 2, . . .

For j = 1, . . . ,m
(a) Find a partition of Bj : B1

j , . . . ,B
r̄
j

(b) For r = 1 . . . , r̄
(b.1) Apply Pegasos update on B r

j

(b.2) t ← t + 1

r̄ = 1: only one update on the whole block
r̄ = |B |: |B | updates, one for each data instance

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 22 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 23 / 35

Techniques To Reduce the Training Time

Data compression for disk reading time Td (|B |)
Except initial time, Td(|B |) ∝ data size |B |
Data compression effectively reduces the disk
reading time (Details not shown)

Initial Split of Data
If original data ordered by labels

a whole block with same label

⇒ slow convergence

A random split is needed

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 24 / 35

Techniques To Reduce the Training Time

Two tasks in the beginning:

random split

data compression

Data > memory:

avoid re-reading data from disk

A carefully design ensures

Random split+data compression by going data only
once

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 25 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 26 / 35

Other Functionalities

Due to the simplicity and block design, we can support

Cross validation

Multi-class classification

Incremental/Decremental setting

Details omitted here.

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 27 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 28 / 35

Data and Environment

Data set l (data) n (features) Mem
yahoo-korea 460,554 3,052,939 2.5GB
webspam 350,000 16,609,143 20.8GB
epsilson 500,000 2,000 16.0GB

64-bit machine with 1 GB RAM

Data 20 times larger

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 29 / 35

Compared Methods

BLOCK-?-?: Block minimization methods.

1. BLOCK-L-N : Solving dual. LIBLINEAR goes through
each block N rounds; N = 1, 10, 20.

2. BLOCK-L-D: Solving dual. LIBLINEAR default
stopping condition for each block.

3. BLOCK-P-B: Solving primal. Pegasos on each whole
block (one update).

4. BLOCK-P-I: Solving primal. Pegasos on each data
instance of the block (|B | updates).

5. LIBLINEAR: The standard LIBLINEAR without any
modification.

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 30 / 35

Function Value Reduction

webspam yahoo-korea

Time for initial block split

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 31 / 35

Function Value Reduction

webspam yahoo-korea

Proposed methods are faster than LIBLINEAR

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 31 / 35

Function Value Reduction

webspam Magnified view

BLOCK-P-? are worse than BLOCK-L-? bp

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 32 / 35

Function Value Reduction
webspam Magnified view

BLOCK-P-? are worse than BLOCK-L-? bp
BLOCK-P-B: applies only one update on each block
Information of a block underutilized

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 32 / 35

Function Value Reduction

webspam Magnified view

bp
Due to long reading time: put more effort on each block

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 32 / 35

Other Experimental Results

Random split vs. Raw

Different block size

raw: Data are ordered according to labels bp
random split: Initial random split bp

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 33 / 35

Other Experimental Results

Random split vs. Raw

Different block size

Random split is useful bp

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 33 / 35

Other Experimental Results

Random split vs. Raw Different block size

m: # of blocks ⇒ smaller m; should use larger |B |

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 33 / 35

Outline

Introduction
A Block Minimization Framework for Linear SVMs
Implementations for SVM
Techniques to Reduce the Training Time
Other Functionalities
Experiments
Conclusions

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 34 / 35

Conclusions

We have proposed methods to effectively handle
data 20 times larger than memory

Our implementation is available at:

http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/#large_linear_classification_

when_data_cannot_fit_in_memory

You can now train pretty large data on your laptop

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 35 / 35

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_linear_classification_when_data_cannot_fit_in_memory

	
	Introduction
	A Block Minimization Framework for Linear SVMs
	Implementations for SVM
	Techniques to Reduce the Training Time
	Other Functionalities
	Experiments
	Conclusions

