Large Linear Classification When Data Cannot Fit In Memory

Hsiang-Fu Yu Department of Computer Science National Taiwan University

Joint work with C.-J. Hsieh, K.-W. Chang, and C.-J. Lin July 27, 2010

- Introduction
- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

Introduction

- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

- Recently linear classification is a popular research topic
- By linear we mean that kernel is not used
- Though linear may not be as good as nonlinear
- for some problems: accuracy by linear is as good as nonlinear, and training and testing are much faster
- This talk addresses on large linear classification

Existing approaches for large linear classification:

- Data smaller than memory: Efficient methods are well-developed
- Data beyond disk size:

Usually handled in a distributed way

Can we have something in the between?

• A simple setting

memory < data < disk

 Ferris and Munson (2003) proposed a method, but only for data with # features « # instances

When Data Cannot Fit In Memory

LIBLINEAR on a machine with 1 GB memory:

Hsiang-Fu Yu (National Taiwan Univ.)

The Goal

Goal: construct large linear classifiers for ordinary users on a single machine

Assumptions

- memory < data < disk
- Sub-sampling causes lower accuracy

Requirement: must be simple so that it supports

- Multi-class classification
- Parameter selection,
- Other functionalities

Modeling the Training Time

train time = time to train in-memory data + time to access data from disk

- Now need to pay attention to the second part
- Loading time may dominate the training time even data can fit in memory
- > ./liblinear-1.51/train rcv1_test.binary rcv1_test.binary: > half millions of documents Loading time: > 1 minute Computing time: < 5 seconds

Conditions for a Viable Method

- Each optimization step reads a *continuous* chunk of training data.
- The optimization procedure converges toward the optimum.
- The number of optimization steps should not be too large.

Linear SVM as the Linear Classifier

We consider SVM as the linear classifier

- Training data $\{(y_i, \mathbf{x}_i)\}_1^l$, $\mathbf{x}_i \in R^n$, $y_i = \pm 1$
- n: # of features, I: # of data
- Primal SVM:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C \sum_{i=1}^{l} \max\left(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)$$

Dual SVM:

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{Q} \boldsymbol{\alpha} - \mathbf{e}^{T} \boldsymbol{\alpha}$$
subject to $0 \leq \alpha_{i} \leq C, \forall i,$

• $\mathbf{e} = [1, \dots, 1]^T$, $Q_{ij} = y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ • $\boldsymbol{\alpha} \in R^I$, each α_i corresponds to \mathbf{x}_i .

Introduction

• A Block Minimization Framework for Linear SVMs

- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

Algorithm 1

- 1. Split $\{1, \ldots, l\}$ to B_1, \ldots, B_m such that B_i fits in memory, and store data into *m* files accordingly.
- 2. Set initial α or **w**
- 3. For k = 1, 2, ... (outer iteration) For j = 1, ..., m (inner iteration) (a) Read $\mathbf{x}_r, \forall r \in B_j$ from disk (b) Conduct operations on $\{\mathbf{x}_r \mid r \in B_j\}$ (c) Update α or \mathbf{w}

Here we do not specify operations on each block

A classical optimization method

- Block of variables
- Widely used in nonlinear SVM
- Here need a connection between a block of data and a block of variables

In the situation, data > memory

- to avoid random access on the disk
- cannot use holistic methods to select block variables
- B_1, \ldots, B_m : fixed partition of $\{1, \ldots, I\}$

Number of Blocks and Block Size

How to decide m (# of blocks)

• Assume all blocks have similar size |B|

• # blocks:
$$m = \frac{1}{|B|}$$

Block size

• Cannot be too large: each B_j must fit in memory

• Cannot be too small: should be as large as possible Total time for an outer iteration: $(T_m(|B|) + T_d(|B|)) \times \frac{1}{|B|} \qquad m = \frac{1}{|B|}$

- $T_m(|B|)$: time cost of one inner iteration in memory
- $T_d(|B|)$: time cost of reading B from disk
- Both $T_m(|B|)$ and $T_d(|B|)$ are functions of |B|

14 / 35

Total time for an outer iteration:

 $(T_m(|B|) + T_d(|B|)) \times \frac{l}{|B|}$ Past, $T_m(|B|)$ only: $T_m(|B|)$ more than linear to |B|• Total time = $T_m(|B|) \times \frac{l}{|B|}$

• previous SVM works: smaller |B| is better

Now, $T_d(|B|)$ added: $T_d(|B|)$: initial cost + O(|B|)

• Total reading time = initial cost $\times \frac{1}{|B|} + O(1)$

• Larger |B| is better (but can't exceed memory)

Introduction

- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

Sub-problem for Dual SVM

Let $f(\alpha)$ be the dual function:

$$f(\alpha) \equiv \frac{1}{2} \alpha^T Q \alpha - \mathbf{e}^T \alpha$$

Each block of variables corresponds to a block of data

$$\begin{array}{l} \min_{\mathbf{d}_{B_j}} & f(\boldsymbol{\alpha} + \mathbf{d}) \\ \text{s.t.} & \mathbf{d}_{\bar{B}_j} = \mathbf{0} \text{ and } 0 \leq \alpha_i + d_i \leq C, \ \forall i \in B_j \end{array}$$
(1)

$$\bar{B}_j = \{1, \ldots, l\} \backslash B_j; \text{ only } \boldsymbol{\alpha}_{B_j} \text{ is changed}$$
(1) involves all data; handled by some techniques (details omitted)

An Implementation for Dual SVM

Algorithm 2 A special case of Algorithm 1

- 1. Split $\{1, \ldots, l\}$ to B_1, \ldots, B_m and store data to m files
- 2. Set initial α and \mathbf{w}
- 3. For k = 1, 2, ... (outer iteration) For j = 1, ..., m (inner iteration) (a) Read $\mathbf{x}_r, \forall r \in B_j$ from disk (b) Approximately solve the sub-problem to obtain $\mathbf{d}_{B_j}^*$. (c) Update $\alpha_{B_j} \leftarrow \alpha_{B_j} + \mathbf{d}_{B_j}^*$ and \mathbf{w}

Solving Sub-problem By LIBLINEAR

Any bound-constrained method can be used

• We consider LIBLINEAR: a coordinate descent method

Two-level block minimization

• Used in some algorithms (e.g., Memisevic, 2006; Pérez-Cruz et al., 2004; Rüping, 2000)

But here inner \Rightarrow memory, outer \Rightarrow disk

• An approximate solution for the sub-problem in practice

Sub-problem stopping criterion and convergence are issues

Sub-problem Stopping Condition and Overall Convergence

Two approaches

- A fixed number of passes to all variables in B_j
 Need to decide the number of passes
- Gradient-based stopping condition

Easy to know how accurate the sub-problem's solution is; we use the one in LIBLINEAR

Convergence holds for both conditions (details omitted)

Block Minimization for Primal SVM

Let f^P be the primal function

$$f^{P}(\mathbf{w}) = rac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i=1}^{l} \max\left(0, 1 - y_{i}\mathbf{w}^{T}\mathbf{x}_{i}
ight)$$

A block of primal variable ${\boldsymbol w}$

- corresponds to a subset of features
- no connection to a block of data

Stochastic gradient descent (SGD) approach

- For each update only a block of data is needed
- We use Pegasos (Shalev-Shwartz et al., 2007)

Pegasos for Each Block

Algorithm 3 A special cases of Algorithm 1

1. Split $\{1, \ldots, l\}$ to B_1, \ldots, B_m and store data into m files accordingly. 2. t = 0 and initial $\mathbf{w} = \mathbf{0}$ 3. For k = 1, 2, ...For i = 1, ..., m(a) Find a partition of B_i : B_i^1, \ldots, B_i^r (b) For $r = 1 \dots, \overline{r}$ (b.1) Apply Pegasos update on B_i^r (b.2) $t \leftarrow t+1$

r
 = 1: only one update on the whole block
 r
 = |B|: |B| updates, one for each data instance

Introduction

- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

Techniques To Reduce the Training Time

Data compression for disk reading time $T_d(|B|)$

- Except initial time, $T_d(|B|) \propto$ data size |B|
- Data compression effectively reduces the disk reading time (Details not shown)

Initial Split of Data

- If original data ordered by labels
 - a whole block with same label
 - $\Rightarrow \mathsf{slow} \ \mathsf{convergence}$
- A random split is needed

Techniques To Reduce the Training Time

Two tasks in the beginning:

- random split
- data compression

Data > memory:

- avoid re-reading data from disk
- A carefully design ensures Random split+data compression by going data only once

Introduction

- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time

Other Functionalities

- Experiments
- Conclusions

Due to the simplicity and block design, we can support

- Cross validation
- Multi-class classification
- Incremental/Decremental setting

Details omitted here.

Introduction

- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

Data set	I (data)	n (features)	Mem
yahoo-korea	460,554	3,052,939	2.5GB
webspam	350,000	16,609,143	<u>20.8GB</u>
epsilson	500,000	2,000	<u>16.0GB</u>

June 02, 2010

29 / 35

64-bit machine with 1 GB RAM
 Data 20 times larger

Hsiang-Fu Yu (National Taiwan Univ.)

BLOCK-*-*: Block minimization methods.

- 1. <u>BLOCK-L-N</u>: Solving dual. LIBLINEAR goes through each block *N* rounds; N = 1, 10, 20.
- 2. <u>BLOCK-L-D</u>: Solving dual. LIBLINEAR default stopping condition for each block.
- 3. <u>BLOCK-P-B</u>: Solving primal. Pegasos on each whole block (one update).
- 4. <u>BLOCK-P-I</u>: Solving primal. Pegasos on each data instance of the block (|B| updates).
- 5. <u>LIBLINEAR</u>: The standard LIBLINEAR without any modification.

webspam

yahoo-korea

Time for initial block split

Hsiang-Fu Yu (National Taiwan Univ.)

webspam

yahoo-korea

Proposed methods are faster than LIBLINEAR

webspam

BLOCK-P-* are worse than BLOCK-L-*

webspam

Magnified view

BLOCK-P-* are worse than BLOCK-L-* BLOCK-P-B: applies only one update on each block Information of a block underutilized

webspam

Magnified view

Due to long reading time: put more effort on each block

Other Experimental Results

Random split vs. Raw

raw: Data are ordered according to labels random split: Initial random split

Other Experimental Results

Random split vs. Raw

Hsiang-Fu Yu (National Taiwan Univ.)

Other Experimental Results

Hsiang-Fu Yu (National Taiwan Univ.)

Introduction

- A Block Minimization Framework for Linear SVMs
- Implementations for SVM
- Techniques to Reduce the Training Time
- Other Functionalities
- Experiments
- Conclusions

- We have proposed methods to effectively handle data 20 times larger than memory
- Our implementation is available at: http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/#large_linear_classification_ when_data_cannot_fit_in_memory
- You can now train pretty large data on your laptop