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@ Introduction
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Linear Classification

@ Recently linear classification is a popular research
topic

@ By linear we mean that kernel is not used

@ Though linear may not be as good as nonlinear

e for some problems:
accuracy by linear is as good as nonlinear, and
training and testing are much faster

@ This talk addresses on large linear classification
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Existing approaches for large linear classification:
@ Data smaller than memory:
Efficient methods are well-developed
@ Data beyond disk size:
Usually handled in a distributed way
Can we have something in the between?
@ A simple setting
memory < data < disk
@ Ferris and Munson (2003) proposed a method,
but only for data with # features < # instances

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 5/35



When Data Cannot Fit In Memory

LIBLINEAR on a machine with 1 GB memory:
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The Goal

Goal: construct large linear classifiers for ordinary users
on a single machine

@ memory < data < disk
@ Sub-sampling causes lower accuracy

Requirement: must be simple so that it supports
@ Multi-class classification
@ Parameter selection,

@ Other functionalities

o
P
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Modeling the Training Time

train time = time to train in-memory data +
time to access data from disk

@ Now need to pay attention to the second part

@ Loading time may dominate the training time
even data can fit in memory

@ > ./liblinear-1.51/train rcvl_test.binary
rcvl_test.binary: > half millions of documents
Loading time: > 1 minute
Computing time: < 5 seconds
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Conditions for a Viable Method

@ Each optimization step reads a continuous chunk of
training data.

© The optimization procedure converges toward the
optimum.

© The number of optimization steps should not be too
large.
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Linear SVM as the Linear Classifier

We consider SVM as the linear classifier

e Training data {(y;,x;)},, xi € R", y; = +1

@ n: # of features, I: # of data

@ Primal SVM:

1 4 ! T
min §w w + Czizl max (O, 1—yw x,-)

w

@ Dual SVM:
1
min EaTQa —e'
subjectto 0<a; < C,Vi,

ee=[1,...,17, Q; = yiyx/x
@ o € R, each «; corresponds to x;
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@ A Block Minimization Framework for Linear SVMs
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A Block Minimization Framework

Algorithm 1

1. Split {1,...,/} to By,..., B, such that B, fits in
memory, and store data into m files accordingly.
2. Set initial o or w
3. For k=1,2,... (outer iteration)
Forj=1,...,m (inner iteration)
(a) Read x,,Vr € B; from disk
(b) Conduct operations on {x, | r € B;}
(c) Update ax or w

Here we do not specify operations on each block
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Block Minimization

A classical optimization method
@ Block of variables
@ Widely used in nonlinear SVM

@ Here need a connection between a block of data and
a block of variables

In the situation, data > memory
@ to avoid random access on the disk
@ cannot use holistic methods to select block variables
@ Bi,...,By: fixed partition of {1,...,/}

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 13 / 35



Number of Blocks and Block Size

How to decide m (# of blocks)

@ Assume all blocks have similar size |B|

@ # blocks: m = ﬁ
Block size

e Cannot be too large: each B; must fit in memory

@ Cannot be too small: should be as large as possible
Total time for an outer iteration:

(To(B) + To(1B)) x &~ m=1&
@ T,(|B|): time cost of one inner iteration in memory
e T,(|B]|): time cost of reading B from disk

@ Both T,,(|B|) and T4(|B]) are functions of |B|
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Block Size Should Be Large

Total time for an outer iteration:
(T (|B\)+ T4(1B]) % 1
Past, T,,(|B|) onIy m(|B|) more than linear to |B|
e Total time = T,,(|B|) x |B|
@ previous SVM works: smaller |B| is better
Now, T4(|B]) added: T4(|B]|) : initial cost + O(|B|)
e Total reading time = initial cost x ﬁ + 0(1)

@ Larger |B| is better (but can’t exceed memory)
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@ Implementations for SVM
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Sub-problem for Dual SVM

Let f() be the dual function:

1
fla) = —aTQa —e'a

Each block of variables corresponds to a block of data

min f(a +d)
(1)
s.t. dgjzoandOSa;—l—digC, Vi € B;

o B ={1,...,/}\B;; only ag, is changed

@ (1) involves all data; handled by some techniques
(details omitted)
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An Implementation for Dual SVM

Algorithm 2 A special case of Algorithm 1
1. Split {1,...,/} to By,..., B, and store data to m

)

files
2. Set initial ¢ and w
3. For k=1,2,... (outer iteration)
For j=1,...,m (inner iteration)

(a) Read x,/, Vr € B; from disk
(b) Approximately solve the
sub-problem to obtain dj .

(c) Update a; - aeg; + dg and w

18 / 35
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Solving Sub-problem By LIBLINEAR

Any bound-constrained method can be used

@ We consider LIBLINEAR: a coordinate descent
method

Two-level block minimization

@ Used in some algorithms (e.g., Memisevic, 2006;
Pérez-Cruz et al., 2004; Riping, 2000)

But here inner = memory, outer = disk

@ An approximate solution for the sub-problem in
practice

Sub-problem stopping criterion and convergence are

issues

Hsiang-Fu Yu (National Taiwan Univ.) June 02, 2010 19 / 35



Sub-problem Stopping Condition and

Overall Convergence

Two approaches
© A fixed number of passes to all variables in B;
Need to decide the number of passes
@ Gradient-based stopping condition

Easy to know how accurate the sub-problem’s
solution is; we use the one in LIBLINEAR

Convergence holds for both conditions (details omitted)

S
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Block Minimization for Primal SVM

Let f7 be the primal function
1 /
P T T
f(w) = SWw + CZ/:1 max (0,1 — yw'x;)

A block of primal variable w
@ corresponds to a subset of features
@ no connection to a block of data
Stochastic gradient descent (SGD) approach
@ For each update only a block of data is needed

@ We use Pegasos (Shalev-Shwartz et al., 2007)
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Pegasos for Each Block

Algorithm 3 A special cases of Algorithm 1
1. Split {1,...,/} to By, ..., B, and store data into m

files accordlngly.
2. t=0and initialw =10
3. Fork=1,2,...
Forj=1,..., m
(a) Find a partltlon of B;: le, ..., Bf
(b) For r =1.
(b.1) Apply Pegasos update on B/
(b.2) t <+ t+1

= 1: only one update on the whole block
B|: |B| updates, one for each data instance
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@ Techniques to Reduce the Training Time
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Techniques To Reduce the Training Time

Data compression for disk reading time T4(|B|)
@ Except initial time, T,4(|B]) o< data size |B|

@ Data compression effectively reduces the disk
reading time (Details not shown)

Initial Split of Data

o If original data ordered by labels

a whole block with same label

= slow convergence

@ A random split is needed
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Techniques To Reduce the Training Time

Two tasks in the beginning:
@ random split
@ data compression
Data > memory:
@ avoid re-reading data from disk
@ A carefully design ensures

Random split+data compression by going data only
once
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@ Other Functionalities
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Other Functionalities

Due to the simplicity and block design, we can support
@ Cross validation
@ Multi-class classification
@ Incremental/Decremental setting

Details omitted here.
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@ Experiments
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Data and Environment

Data set |/ (data) n (features)  Mem
yahoo-korea | 460,554 3,052,939 2.5GB
webspam 350,000 16,609,143 20.8GB
epsilson 500,000 2,000 16.0GB

@ 64-bit machine with 1 GB RAM
Data 20 times larger
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Compared Methods

BLOCK-x-%: Block minimization methods.

1. BLOCK-L-N: Solving dual. LIBLINEAR goes through
each block /V rounds; N =1, 10, 20.

2. BLOCK-L-D: Solving dual. LIBLINEAR default
stopping condition for each block.

3. BLOCK-P-B: Solving primal. Pegasos on each whole
block (one update).

4. BLOCK-P-I: Solving primal. Pegasos on each data
instance of the block (|B| updates).

5. LIBLINEAR: The standard LIBLINEAR without any
modification.
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Function Value Reduction
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Function Value Reduction
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Function Value Reduction

webspam Magnified view
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Function Value Reduction

webspam Magnified view
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BLOCK-P-x are worse than BLOCK-L-x
BLOCK-P-B: applies only one update on each block

Information of a block underutilized
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Function Value Reduction

webspam Magnified view
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Other Experimental Results

Random split vs. Raw
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Other Experimental Results

Random split vs. Raw
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Other Experimental Results

Random split vs. Raw Different block size
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@ Conclusions
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Conclusions

@ We have proposed methods to effectively handle
data 20 times larger than memory

@ Our implementation is available at:

http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/#large_linear_classification_
when_data_cannot_fit_in_memory

@ You can now train pretty large data on your laptop
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