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Erdős-Ko-Rado Theorems
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The Theorem

Intersecting Families

Definition

A family of subsets F of some set is intersecting if any two
members of F have at least one point in common.
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The Theorem

EKR

Theorem

If F is an intersecting family of k-subsets from a set V of size v,
then

1 |F| ≤
(
v−1
k−1

)
.

2 If equality holds, F consists of the the k-subsets that contain
i, for some i in V .

Chris Godsil
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Sets to Graphs

Cocliques

Definition

A coclique in a graph is a set of vertices, such that no two vertices
in the set are adjacent. The maximum size of a coclique in a graph
X is α(X).
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Sets to Graphs

A Graph

Definition

The Kneser graph Kv:k is the graph with the k-subsets of a v-set
as its vertices, where two k-subsets are adjacent if they are disjoint
as sets.
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Sets to Graphs

K5:2
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Sets to Graphs

EKR for Graphs

Theorem

We have α(Kv:k) =
(
v−1
k−1

)
and a coclique of maximum size

consists of the k-subsets that contain i, for some i.
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Sets to Graphs

Other Graphs

q-Kneser: The vertices are the k-dimensional subspaces of a
vector space of dimension v over GF (q); subspaces
are adjacent if their intersection is the zero subspace.

Derangements: The vertices are the permutations of 1, . . . , n; two
permutations ρ and σ are adjacent if ρσ−1 does not
have a fixed point.

Partitions: Vertices are the partitions of a set of size n2

consisting of n cells of size n; two partitions are
adjacent if their meet is the discrete partition.
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Sets to Graphs

Cocliques

q-Kneser: The subspaces that contain a given 1-dimensional
subspace.

Derangements: The permutations that map i to j.

Partitions: The partitions with i and j in the same cell.
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Bounds

Quote

It claims to be fully automatic, but actually you have to push this
little button here.
—Gentleman John Killian
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Bounds

A Positive Semidefinite Matrix

Let X be a k-regular graph on v vertices with adjacency matrix A
and let τ be the least eigenvalue of A. We define

M := (A− τI)− k − τ
v

J.
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Bounds

Eigenvalues

We have

M1 = (k − τ)1− k − τ
v

J1 = (k − τ)1− (k − τ)1 = 0.

If Az = θz and 1T z = 0, then

Mz = (θ − τ)z − k − τ
v

Jz = (θ − τ)z.

So all eigenvalues of M are non-negative and consequently M < 0.
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Erdős-Ko-Rado Theorems
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Bounds

Inequalities

Let S be a coclique in X with characteristic vector x. Then
xTAx = 0 and, since M is positive semidefinite, xTMx ≥ 0.
Consequently

0 ≤ xTAx− τxTx− k − τ
v

xTJx

= 0− τ |S| − k − τ
v
|S|2.
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Bounds

Delsarte-Hoffman

Theorem

If X is a k-regular graph on v vertices with least eigenvalue τ , then

α(X) ≤ v

1− k
τ

.

This is the ratio bound for cocliques, due to Delsarte and Hoffman.
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Bounds

EKR bound

The Kneser graph Kv:k has valency(
v − k
k

)
and least eigenvalue

−
(
v − k − 1
k − 1

)
.
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Bounds

EKR1

So

α(Kv:k) ≤
(
v
k

)
1 + (v−k

k )
(v−k−1

k−1 )

=

(
v
k

)
1 + v−k

k

=
(
v − 1
k − 1

)
.
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Bounds

q-Kneser

Consider the q-Kneser graph. This has
[
v
k

]
vertices, valency

qk
2

[
v − k
k

]
and its least eigenvalue is

−qk(k−1)

[
v − k − 1
k − 1

]
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Bounds

EKR2

The ratio bound is [
v − 1
k − 1

]
which is realized by the k-subspaces that contain a given
1-dimensional subspace.
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Bounds

The Derangement Graph

The vertices of the derangement graph D(n) are the permutations
of 1, . . . , n; two permutations ρ and σ are adjacent if ρσ−1 does
not have a fixed point.

cocliques: The set Si,j of permutations that map i to j is a
coclique, of size (n− 1)!.

cliques: Latin squares are cliques. In particular, if G is a
regular subgroup of Sym(n), then the elements of G
form a clique of size n, as do its cosets. (This implies
that α(D(n)) = (n− 1)!.)
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Bounds

Eigenvalues of D(n)

???
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Equality

Remarks

1 If S is a coclique with characteristic vector x and
|S| = v/(1− k

τ ) then xTMx = 0.

2 If M < 0 and xTMx = 0, then Mx = 0. (Proof: M = UTU
and xTUTUx = 0 if and only if Ux = 0.)

3 Hence if y := x− |S|v 1, then My = 0.
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Equality

Eigenvectors

Theorem

If X is a k-regular graph on v vertices with least eigenvalue τ and
x is the characteristic vector of a coclique with size v/(1− k

τ ),
then x− |S|v 1 is an eigenvector for A(X), with eigenvalue τ .

Proof.

If y := x− |S|v 1, then

0 = My = (A− τI)y − k − τ
v

Jy = (A− τI)y.
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Equality

Eigenspaces

Let W be the
(
v
k

)
× v matrix whose rows are the characteristic

vectors of the k-subsets of {1, . . . , v}. Then the eigenspace for the
least eigenvalue of Kv:k consists of the vectors in col(W ) that are
orthogonal to 1.

Corollary

If x is the characteristic vector of a coclique of size
(
v−1
k−1

)
in Kv:k,

then x ∈ col(W ).
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Equality

Our Problem

Prove that if Wh is a 01-vector, then h = ei for some i.
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1 Erdős-Ko-Rado
The Theorem
Sets to Graphs

2 A Method
Bounds
Equality

3 Characterisations
Kneser
Derangements

Chris Godsil
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Kneser

A Polytope

Suppose x is the characteristic vector of a coclique S in Kv:k with
size

(
v−1
k−1

)
. Then

x = Wh

for some h. If we view the rows of W as points in Rv, they form
the vertices of a convex polytope and the support of x is a face.
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Kneser

Faces

Theorem

A face of the polytope generated by the rows of W consists of the
k-subsets that contain a given subset S, and are contained in a
given subset T . All faces arise in this way.

Chris Godsil
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Kneser

Proving EKR, I

By the theorem, the support of Wh consists of the k-subsets α
such that

S ⊆ α ⊆ T

for some sets S and T . If S 6= ∅, we are done.
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Kneser

Proving EKR, II

So assume S = ∅. Then the support of Wh consists of all
k-subsets of T . Since the support is an intersecting family,
|T | ≤ 2k − 1 and consequently our family has size(

2k − 1
k

)
=

(
2k − 1
k − 1

)
.

But v ≥ 2k + 1 and(
2k − 1
k − 1

)
<

(
2k
k − 1

)
=

(
v − 1
k − 1

)
.

Thus if S = ∅, the support of Wh is not an intersecting family of
maximal size.
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Kneser

A Second Proof

If α ∈ S and β is a k-subset disjoint from S, then (Wh)β = 0. Let
N be the submatrix formed by the rows of W that are indexed by
subsets in the complement of α. Then

Nh = 0

Further we can write N in the form

N =
(
0 N1

)
where the initial zero columns are indexed by the elements of α.
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Kneser

Rank

The rows of N1 are indexed by the k-subsets disjoint from α, the
columns by the v − k points not in α. So N1 is Wv−k,k and, if
v − k > k, its columns are linearly independent.

Hence if (
0 N1

)
h = 0,

then α contains the support of h.
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Derangements

Babbage to Tennyson

Sir, in your otherwise beautiful poem (The Vision of Sin) there is a
verse which reads:

Every moment dies a man,
every moment one is born.

Obviously this cannot be true and I suggest that in the next
edition you have it read:

Every moment dies a man,
every moment one-and-one-sixteenth is born.

Even this value is slightly in error but should be sufficiently
accurate for the purposes of poetry.
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Derangements

The Bound

The cosets of a regular subgroup of Sym(n) form a partition of the
vertices into (n− 1)! cliques of size n, and since any coclique
contains at most one vertex from each clique, it follows that

α(D(n)) ≤ (n− 1)!.
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Derangements

Clique-Coclique

Theorem

If the graph X has a set of cliques of the same size that cover each
vertex the same number of times, then α(X)ω(X) ≤ |V (X)|.
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Derangements

Proof

C: the set of cliques in our clique cover

N : the incidence matrix for the vertices versus cliques.

ν: the number of cliques per vertex (so N1 = ν1).

If x is the characteristic vector of a coclique, then xTN ≤ 1T and
hence xTN1 ≤ |C|. On the other hand

xTN1 = νxT1 = ν|S|

and so |S| ≤ |C|/ν. Since |C|ω(X) ≥ ν|V (X)|, the result follows.
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Derangements

Equality

Suppose we have a uniform clique cover and equality holds in the
clique-coclique bound. Let S and C respectively be a coclique and
clique of maximum size with characteristic vectors xS and xT .
Then |S ∩ C| = 1 and the vectors

xS −
|S|
|V (X)|

1, xC −
|C|
|V (X)|

1

are orthogonal.
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Derangements

Bad News

Each eigenspace of the derangement graph is a sum of
irreducible modules for Sym(n). These modules are indexed
by integer partitions and each occurs exactly once.

There are algorithms to compute the eigenvalue associated to
the module, but they do not allow us to read off the least
eigenvalue, and so we cannot use the ratio bound

:-(
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Erdős-Ko-Rado Theorems
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Derangements

Good News

We can find cliques whose characteristic vectors span the
orthogonal complement of the module associated to the
partition (n− 1, 1).

By the clique-coclique bound, this implies that the
characteristic vector of a coclique of size (n− 1)! must lie in
the module associated to the partition (n− 1, 1).

From this it follows (rk(N1) argument, or use perfect
matching polytope) that a coclique of size (n− 1)! must be
one of the sets Si,j .
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Erdős-Ko-Rado Theorems
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Problems

1 Perfect matchings in K2m.

2 Partitions graphs with n ≥ 4.
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