Characterisations

Erdős-Ko-Rado Theorems

Chris Godsil

WaterMellon, May 2009

Chris Godsil Erdős-Ko-Rado Theorems ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Characterisations

= 990

・ロン ・回 と ・ ヨ と ・ ヨ と …

Collaborators

Mike Newman, Karen Meagher

Characterisations

Outline

1 Erdős-Ko-Rado

- The Theorem
- Sets to Graphs

2 A Method

- Bounds
- Equality

3 Characterisations

- Kneser
- Derangements

Erdős-Ko-Rado	A Method	Characterisations
•00 000000	00000000000 00000	0000000
The Theorem		

Outline

Erdős-Ko-Rado
 The Theorem
 Sets to Graphs

2 A Method

- Bounds
- Equality

3 Characterisations

- Kneser
- Derangements

The Theorem

Characterisations

Intersecting Families

Definition

A family of subsets \mathcal{F} of some set is intersecting if any two members of \mathcal{F} have at least one point in common.

Chris Godsil Erdős-Ko-Rado Theorems ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

Erdős-Ko-Rado	A Method	Characterisations
000 0000000	0000000000 00000	0000000
The Theorem		

If ${\mathcal F}$ is an intersecting family of k-subsets from a set V of size v, then

Erdős-Ko-Rado	A Method	Characterisations
000000	000000000000000000000000000000000000000	00000000
The Theorem		

If ${\mathcal F}$ is an intersecting family of k-subsets from a set V of size v, then

$$|\mathcal{F}| \le \binom{v-1}{k-1}.$$

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado	A Method	Characterisations
00● 0000000	00000000000 00000	0000000
The Theorem		

If \mathcal{F} is an intersecting family of k-subsets from a set V of size v, then

$$|\mathcal{F}| \le {\binom{v-1}{k-1}}.$$

 If equality holds, F consists of the the k-subsets that contain i, for some i in V.

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado	A Method	Characterisations
000 000000	00000000000 00000	0000000
Sets to Graphs		

Outline

- Bounds
- Equality
- 3 Characterisations
 - Kneser
 - Derangements

Erdős-Ko-Rado	A Method
Sets to Graphs	00000

э.

Cocliques

Definition

A coclique in a graph is a set of vertices, such that no two vertices in the set are adjacent. The maximum size of a coclique in a graph X is $\alpha(X)$.

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado	A Method	Characterisations
000	0000000000 00000	0000000
Sets to Graphs		

Definition

The Kneser graph $K_{v:k}$ is the graph with the *k*-subsets of a *v*-set as its vertices, where two *k*-subsets are adjacent if they are disjoint as sets.

Chris Godsil Erdős-Ko-Rado Theorems ◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Erdős-Ko-Rado	A Method	Characterisations
000	000000000000000000000000000000000000000	0000000 000000000
Sets to Graphs		

 $K_{5:2}$

Erdős-Ko-Rado
000
0000000
Sets to Graphs

Characterisations

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

EKR for Graphs

Theorem

We have $\alpha(K_{v:k}) = {\binom{v-1}{k-1}}$ and a coclique of maximum size consists of the k-subsets that contain *i*, for some *i*.

Erdős-Ko-Rado
000
0000000
Sets to Graphs

Characterisations

Other Graphs

q-Kneser: The vertices are the k-dimensional subspaces of a vector space of dimension v over GF(q); subspaces are adjacent if their intersection is the zero subspace.

Chris Godsil Erdős-Ko-Rado Theorems ▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = の � @

Erdős-Ko-Rado
000
0000000
Sets to Graphs

A Method 00000000000 00000 Characterisations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Other Graphs

q-Kneser: The vertices are the k-dimensional subspaces of a vector space of dimension v over GF(q); subspaces are adjacent if their intersection is the zero subspace.

Derangements: The vertices are the permutations of $1, \ldots, n$; two permutations ρ and σ are adjacent if $\rho\sigma^{-1}$ does not have a fixed point.

Erdős-Ko-Rado
000
0000000
Sets to Graphs

A Method 00000000000 00000 Characterisations 0000000 00000000

Other Graphs

- *q*-Kneser: The vertices are the *k*-dimensional subspaces of a vector space of dimension v over GF(q); subspaces are adjacent if their intersection is the zero subspace.
- Derangements: The vertices are the permutations of $1, \ldots, n$; two permutations ρ and σ are adjacent if $\rho\sigma^{-1}$ does not have a fixed point.
 - Partitions: Vertices are the partitions of a set of size n^2 consisting of n cells of size n; two partitions are adjacent if their meet is the discrete partition.

Erdős-Ko-Rado	A Method	Characterisations
000 000000●	0000000000 00000	0000000 000000000
Sets to Graphs		

q-Kneser: The subspaces that contain a given 1-dimensional subspace.

Erdős-Ko-Rado	A Method	Characterisations
000 000000●	0000000000 00000	0000000
Sets to Graphs		

q-Kneser: The subspaces that contain a given 1-dimensional subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Derangements: The permutations that map i to j.

Erdős-Ko-Rado	A Method	Characterisations
000 000000●	0000000000 00000	0000000
Sets to Graphs		

q-Kneser: The subspaces that contain a given 1-dimensional subspace. Derangements: The permutations that map i to j. Partitions: The partitions with i and j in the same cell.

Bounds

A Method •00000000000 00000 Characterisations

Outline

Erdős-Ko-Rado
 The Theorem
 Sets to Graphs

2 A MethodBounds

Equality

3 Characterisations

Kneser

Derangements

<ロ> <回> <回> <三> <三> <三> <三> <三</p>

Erdős-Ko-Rado	A Method	Characterisations
000 0000000	00000000000000000000000000000000000000	0000000 000000000
Bounds		

It claims to be fully automatic, but actually you have to push this little button here.

—Gentleman John Killian

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Bounds

 Characterisations

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

A Positive Semidefinite Matrix

Let X be a k-regular graph on v vertices with adjacency matrix A and let τ be the least eigenvalue of A. We define

$$M := (A - \tau I) - \frac{k - \tau}{v} J.$$

Erdős-Ko-Rado
000
0000000

Bounds

A Method

Characterisations

Eigenvalues

We have

$$M\mathbf{1} = (k-\tau)\mathbf{1} - \frac{k-\tau}{v}J\mathbf{1} = (k-\tau)\mathbf{1} - (k-\tau)\mathbf{1} = 0.$$

Chris Godsil Erdős-Ko-Rado Theorems Bounds

A Method

Characterisations

Eigenvalues

We have

$$M\mathbf{1} = (k-\tau)\mathbf{1} - \frac{k-\tau}{v}J\mathbf{1} = (k-\tau)\mathbf{1} - (k-\tau)\mathbf{1} = 0.$$

If $Az = \theta z$ and $\mathbf{1}^T z = 0$, then

$$Mz = (\theta - \tau)z - \frac{k - \tau}{v}Jz = (\theta - \tau)z.$$

So all eigenvalues of M are non-negative and consequently $M \succcurlyeq 0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Erdős-Ko-Rado
000
0000000

Bounds

 Characterisations

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Inequalities

Let S be a coclique in X with characteristic vector x. Then $x^TAx = 0$ and, since M is positive semidefinite, $x^TMx \ge 0$. Consequently

$$0 \le x^T A x - \tau x^T x - \frac{k - \tau}{v} x^T J x$$
$$= 0 - \tau |S| - \frac{k - \tau}{v} |S|^2.$$

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado
000
0000000

Bounds

 Characterisations

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Delsarte-Hoffman

Theorem

If X is a k-regular graph on v vertices with least eigenvalue τ , then

$$\alpha(X) \le \frac{v}{1 - \frac{k}{\tau}}.$$

This is the ratio bound for cocliques, due to Delsarte and Hoffman.

Bounds

 Characterisations

EKR bound

The Kneser graph $K_{v:k}$ has valency

$$\binom{v-k}{k}$$

and least eigenvalue

$$-\binom{v-k-1}{k-1}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado	A Method	Characterisations
000	000000000000	0000000
0000000	00000	00000000
Bounds		

So

 $\alpha(K_{v:k}) \le \frac{\binom{v}{k}}{1 + \frac{\binom{v-k}{k}}{\binom{v-k-1}{(v-k-1)}}} = \frac{\binom{v}{k}}{1 + \frac{v-k}{k}} = \binom{v-1}{k-1}.$

Chris Godsil Erdős-Ko-Rado Theorems ◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Erdős-Ko-Rado
000
0000000

Bounds

 Characterisations

$$q$$
-Kneser

Consider the q-Kneser graph. This has $\begin{bmatrix} v \\ k \end{bmatrix}$ vertices, valency

$$q^{k^2} \begin{bmatrix} v-k\\k \end{bmatrix}$$

and its least eigenvalue is

$$-q^{k(k-1)} \begin{bmatrix} v-k-1\\k-1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado	A Method	Characterisations
000 0000000	0000000000000 00000	0000000 000000000
Bounds		

The ratio bound is

$$\begin{bmatrix} v-1\\ k-1 \end{bmatrix}$$

which is realized by the k-subspaces that contain a given 1-dimensional subspace.

Bounds

 Characterisations

The Derangement Graph

The vertices of the derangement graph D(n) are the permutations of $1, \ldots, n$; two permutations ρ and σ are adjacent if $\rho \sigma^{-1}$ does not have a fixed point.

Chris Godsil Erdős-Ko-Rado Theorems ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

Bounds

 Characterisations 0000000 000000000

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

The Derangement Graph

The vertices of the derangement graph D(n) are the permutations of $1, \ldots, n$; two permutations ρ and σ are adjacent if $\rho \sigma^{-1}$ does not have a fixed point.

cocliques: The set $S_{i,j}$ of permutations that map i to j is a coclique, of size (n-1)!.

Bounds

 Characterisations 0000000 00000000

The Derangement Graph

The vertices of the derangement graph D(n) are the permutations of $1, \ldots, n$; two permutations ρ and σ are adjacent if $\rho \sigma^{-1}$ does not have a fixed point.

- cocliques: The set $S_{i,j}$ of permutations that map i to j is a coclique, of size (n-1)!.
 - cliques: Latin squares are cliques. In particular, if G is a regular subgroup of Sym(n), then the elements of G form a clique of size n, as do its cosets. (This implies that $\alpha(D(n)) = (n-1)!$.)

Chris Godsil

Erdős-Ko-Rado Theorems

Bounds

A Method 00000000000 00000 Characterisations

Eigenvalues of D(n)

???

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Equality

A Method

Characterisations

Outline

Erdős-Ko-Rado
 The Theorem
 Sets to Graphs

2 A Method

- Bounds
- Equality
- 3 Characterisations
 - Kneser
 - Derangements

<ロ> <回> <回> <三> <三> <三> <三> <三</p>

Erdős-Ko-Rado
000
0000000

Equality

A Method

Characterisations

Remarks

I If S is a coclique with characteristic vector x and $|S| = v/(1 - \frac{k}{\tau})$ then $x^T M x = 0$.

Chris Godsil Erdős-Ko-Rado Theorems ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Equality

A Method

Characterisations

Remarks

- I If S is a coclique with characteristic vector x and $|S| = v/(1 - \frac{k}{\tau})$ then $x^T M x = 0$.
- 2 If $M \ge 0$ and $x^T M x = 0$, then M x = 0. (Proof: $M = U^T U$ and $x^T U^T U x = 0$ if and only if U x = 0.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Chris Godsil

Erdős-Ko-Rado Theorems

Equality

A Method

Characterisations

Remarks

I If S is a coclique with characteristic vector x and

$$|S| = v/(1 - \frac{k}{\tau})$$
 then $x^T M x = 0$.

2 If $M \succeq 0$ and $x^T M x = 0$, then M x = 0. (Proof: $M = U^T U$ and $x^T U^T U x = 0$ if and only if U x = 0.)

3 Hence if
$$y := x - \frac{|S|}{v} \mathbf{1}$$
, then $My = 0$.

Chris Godsil

Erdős-Ko-Rado Theorems

Equality

A Method

Characterisations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Eigenvectors

Theorem

If X is a k-regular graph on v vertices with least eigenvalue τ and x is the characteristic vector of a coclique with size $v/(1-\frac{k}{\tau})$, then $x - \frac{|S|}{v}\mathbf{1}$ is an eigenvector for A(X), with eigenvalue τ .

Equality

A Method

Characterisations

Eigenvectors

Theorem

If X is a k-regular graph on v vertices with least eigenvalue τ and x is the characteristic vector of a coclique with size $v/(1-\frac{k}{\tau})$, then $x - \frac{|S|}{v}\mathbf{1}$ is an eigenvector for A(X), with eigenvalue τ .

Proof. If $y := x - \frac{|S|}{v} \mathbf{1}$, then $0 = My = (A - \tau I)y - \frac{k - \tau}{v} Jy = (A - \tau I)y.$

Chris Godsil

Erdős-Ko-Rado Theorems

Equality

A Method

Characterisations

Eigenspaces

Let W be the $\binom{v}{k} \times v$ matrix whose rows are the characteristic vectors of the k-subsets of $\{1, \ldots, v\}$. Then the eigenspace for the least eigenvalue of $K_{v:k}$ consists of the vectors in $\operatorname{col}(W)$ that are orthogonal to **1**.

・ロト ・四ト ・ヨト ・ヨト ・ヨー うへの

Equality

A Method

Characterisations 0000000 000000000

Eigenspaces

Let W be the $\binom{v}{k} \times v$ matrix whose rows are the characteristic vectors of the k-subsets of $\{1, \ldots, v\}$. Then the eigenspace for the least eigenvalue of $K_{v:k}$ consists of the vectors in $\operatorname{col}(W)$ that are orthogonal to **1**.

Corollary

If x is the characteristic vector of a coclique of size $\binom{v-1}{k-1}$ in $K_{v:k}$, then $x \in \operatorname{col}(W)$.

Chris Godsil

Erdős-Ko-Rado Theorems

Equality

A Method

Characterisations

Our Problem

Prove that if Wh is a 01-vector, then $h = e_i$ for some i.

Chris Godsil Erdős-Ko-Rado Theorems ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Kneser

Characterisations •000000 000000000

Outline

1 Erdős-Ko-Rado

- The Theorem
- Sets to Graphs

2 A Method

- Bounds
- Equality

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへの

Kneser

Characterisations

A Polytope

Suppose x is the characteristic vector of a coclique S in $K_{v:k}$ with size $\binom{v-1}{k-1}.$ Then

x = Wh

for some h. If we view the rows of W as points in \mathbb{R}^{v} , they form the vertices of a convex polytope and the support of x is a face.

Erdős-Ko-Rado	A Method	Characterisations
0000000	000000000000000000000000000000000000000	000000000
Kneser		

A face of the polytope generated by the rows of W consists of the k-subsets that contain a given subset S, and are contained in a given subset T. All faces arise in this way.

3

Kneser

Characterisations

Proving EKR, I

By the theorem, the support of Wh consists of the $k\text{-subsets }\alpha$ such that

$$S\subseteq \alpha\subseteq T$$

for some sets S and T. If $S \neq \emptyset$, we are done.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Erdős-Ko-Rado	
000	
0000000	

Kneser

Characterisations

Proving EKR, II

So assume $S = \emptyset$. Then the support of Wh consists of all k-subsets of T. Since the support is an intersecting family, $|T| \le 2k - 1$ and consequently our family has size

$$\binom{2k-1}{k} = \binom{2k-1}{k-1}.$$

But $v \ge 2k+1$ and

$$\binom{2k-1}{k-1} < \binom{2k}{k-1} = \binom{v-1}{k-1}.$$

Thus if $S = \emptyset$, the support of Wh is not an intersecting family of maximal size.

▲口 > ▲母 > ▲目 > ▲目 > → 目 → のへで

Erdős-Ko-Rado
000
0000000

Kneser

Characterisations

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

A Second Proof

If $\alpha \in S$ and β is a k-subset disjoint from S, then $(Wh)_{\beta} = 0$. Let N be the submatrix formed by the rows of W that are indexed by subsets in the complement of α . Then

Nh = 0

Erdős-Ko-Rado
000
0000000

Kneser

A Method 00000000000 00000 Characterisations

A Second Proof

If $\alpha \in S$ and β is a k-subset disjoint from S, then $(Wh)_{\beta} = 0$. Let N be the submatrix formed by the rows of W that are indexed by subsets in the complement of α . Then

$$Nh = 0$$

Further we can write N in the form

$$N = \begin{pmatrix} 0 & N_1 \end{pmatrix}$$

where the initial zero columns are indexed by the elements of α .

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 めんの

Erdős-Ko-Rado 000 0000000	A Method 00000000000 00000	Characterisations 000000● 000000000
Kneser		

Rank

The rows of N_1 are indexed by the k-subsets disjoint from α , the columns by the v - k points not in α . So N_1 is $W_{v-k,k}$ and, if v - k > k, its columns are linearly independent.

Erdős-Ko-Rado 000 0000000	A Method 00000000000 00000	Characterisations 000000●
Kneser		

Rank

The rows of N_1 are indexed by the k-subsets disjoint from α , the columns by the v - k points not in α . So N_1 is $W_{v-k,k}$ and, if v - k > k, its columns are linearly independent. Hence if

$$\begin{pmatrix} 0 & N_1 \end{pmatrix} h = 0,$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

then α contains the support of h.

Erdős-Ko-Rado
000
0000000

Characterisations

Outline

- The Theorem
- Sets to Graphs

2 A Method

- Bounds
- Equality

A Method 000000000000 00000 Characterisations

Babbage to Tennyson

Sir, in your otherwise beautiful poem (The Vision of Sin) there is a verse which reads:

Every moment dies a man, every moment one is born.

Obviously this cannot be true and I suggest that in the next edition you have it read:

Every moment dies a man, every moment one-and-one-sixteenth is born.

Even this value is slightly in error but should be sufficiently accurate for the purposes of poetry.

Derangements

Characterisations

The Bound

The cosets of a regular subgroup of Sym(n) form a partition of the vertices into (n-1)! cliques of size n, and since any coclique contains at most one vertex from each clique, it follows that

 $\alpha(D(n)) \le (n-1)!.$

Derangements

Characterisations

Clique-Coclique

Theorem

If the graph X has a set of cliques of the same size that cover each vertex the same number of times, then $\alpha(X)\omega(X) \leq |V(X)|$.

Chris Godsil Erdős-Ko-Rado Theorems ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Erdős-Ko-Rado 000 0000000	A Method 00000000000 00000	Characterisations
Derangements		

 $\mathcal{C}:$ the set of cliques in our clique cover

000 000000000 00000000 000000000000000	0000000 00000000
Derangements	

- \mathcal{C} : the set of cliques in our clique cover
- N: the incidence matrix for the vertices versus cliques.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Erdős-Ko-Rado
000
0000000

A Method 000000000000 00000

- $\mathcal{C}:$ the set of cliques in our clique cover
- N: the incidence matrix for the vertices versus cliques.
 - ν : the number of cliques per vertex (so $N\mathbf{1} = \nu\mathbf{1}$).

Erdős-Ko-Rado
000
0000000

A Method 000000000000 00000

- $\mathcal{C}:$ the set of cliques in our clique cover
- N: the incidence matrix for the vertices versus cliques.
 - ν : the number of cliques per vertex (so $N\mathbf{1} = \nu\mathbf{1}$).

Erdős-Ko-Rado	
000	
0000000	

Proof

- $\mathcal{C} {:} \ \text{the set of cliques in our clique cover}$
- N: the incidence matrix for the vertices versus cliques.
 - ν : the number of cliques per vertex (so $N\mathbf{1} = \nu\mathbf{1}$).

If x is the characteristic vector of a coclique, then $x^T N \leq \mathbf{1}^T$ and hence $x^T N \mathbf{1} \leq |\mathcal{C}|$. On the other hand

$$x^T N \mathbf{1} = \nu x^T \mathbf{1} = \nu |S|$$

and so $|S| \leq |\mathcal{C}|/\nu.$ Since $|\mathcal{C}|\omega(X) \geq \nu |V(X)|,$ the result follows.

Chris Godsil

Erdős-Ko-Rado Theorems

Erdős-Ko-Rado 000 0000000	A Method 00000000000 00000	Characterisations
Derangements		

Equality

Suppose we have a uniform clique cover and equality holds in the clique-coclique bound. Let S and C respectively be a coclique and clique of maximum size with characteristic vectors x_S and x_T . Then $|S \cap C| = 1$ and the vectors

$$x_S - \frac{|S|}{|V(X)|} \mathbf{1}, \qquad x_C - \frac{|C|}{|V(X)|} \mathbf{1}$$

3

are orthogonal.

Derangements

Characterisations

Each eigenspace of the derangement graph is a sum of irreducible modules for Sym(n). These modules are indexed by integer partitions and each occurs exactly once.

Chris Godsil Erdős-Ko-Rado Theorems Derangements

Characterisations

Bad News

- Each eigenspace of the derangement graph is a sum of irreducible modules for Sym(n). These modules are indexed by integer partitions and each occurs exactly once.
- There are algorithms to compute the eigenvalue associated to the module, but they do not allow us to read off the least eigenvalue, and so we cannot use the ratio bound

Derangements

Characterisations

Bad News

- Each eigenspace of the derangement graph is a sum of irreducible modules for Sym(n). These modules are indexed by integer partitions and each occurs exactly once.
- There are algorithms to compute the eigenvalue associated to the module, but they do not allow us to read off the least eigenvalue, and so we cannot use the ratio bound

Derangements

Characterisations

Bad News

- Each eigenspace of the derangement graph is a sum of irreducible modules for Sym(n). These modules are indexed by integer partitions and each occurs exactly once.
- There are algorithms to compute the eigenvalue associated to the module, but they do not allow us to read off the least eigenvalue, and so we cannot use the ratio bound :-(

Erdős-Ko-Rado
000
0000000

Characterisations

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Good News

■ We can find cliques whose characteristic vectors span the orthogonal complement of the module associated to the partition (n − 1, 1).

Derangements
0000000
000
Erdős-Ko-Rado

Good News

- We can find cliques whose characteristic vectors span the orthogonal complement of the module associated to the partition (n − 1, 1).
- By the clique-coclique bound, this implies that the characteristic vector of a coclique of size (n-1)! must lie in the module associated to the partition (n-1,1).

A Method 000000000000 00000 Characterisations

Good News

- We can find cliques whose characteristic vectors span the orthogonal complement of the module associated to the partition (n − 1, 1).
- By the clique-coclique bound, this implies that the characteristic vector of a coclique of size (n-1)! must lie in the module associated to the partition (n-1,1).
- From this it follows (rk(N₁) argument, or use perfect matching polytope) that a coclique of size (n − 1)! must be one of the sets S_{i,j}.

Erdős-Ko-Rado
000
0000000

Characterisations ○○○○○○ ○○○○○○●

1 Perfect matchings in K_{2m} .

(ロ) (日) (日) (王) (王) (王) (0,0)

Derangements

Characterisations ○○○○○○ ○○○○○○●

- **1** Perfect matchings in K_{2m} .
- **2** Partitions graphs with $n \ge 4$.

Chris Godsil Erdős-Ko-Rado Theorems