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Agnostic PAC Learning

Hypothesis class H ⊂ YX

Loss function: ` : H× (X × Y)→ R
D - unknown distribution over X × Y
True risk: LD(h) = E(x,y)∼D[`(h, (x, y))]

Training set: S = (x1, y1), . . . , (xm, ym)
i.i.d.∼ Dm

Goal: use S to find hS s.t. with high probability,

LD(hS) ≤ min
h∈H

LD(h) + ε

ERM rule:

ERM(S) ∈ argmin
h∈H

LS(h) :=
1

m

m∑
i=1

`(h, (xi, yi))
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3-term

Error Decomposition

(Bottou & Bousquet’ 08)

h? = argmin
h∈H

LD(h) ; ERM(S) = argmin
h∈H

LS(h)

LD(hS) = LD(h?)︸ ︷︷ ︸
approximation

+LD(ERM(S))− LD(h?)︸ ︷︷ ︸
estimation

+ LD(hS)− LD(ERM(S))︸ ︷︷ ︸
optimization

Bias-Complexity tradeoff: Larger H decreases approximation error but
increases estimation error

What about optimization error ?

Two resources: samples and runtime
Sample-Computational complexity (Decatur, Goldreich, Ron ’98)
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Joint Time-Sample Complexity

Goal:
LD(hS) ≤ min

h∈H
LD(h) + ε

Sample complexity: How many examples are needed ?

Time complexity: How much time is needed ?

TH,ε(m) = how much time is needed when |S| = m ?

Time-sample complexity

TH,ε

m

sa
m

p
le

co
m

p
le

xi
ty

data-laden
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Outline

The Sample-Computational tradeoff:

Agnostic learning of preferences

Learning margin-based halfspaces

Formally establishing the tradeoff
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Agnostic learning Preferences

The Learning Problem:

X = [d]× [d], Y = {0, 1}
Given (i, j) ∈ X predict if i is preferable over j

H is all permutations over [d]

Loss function = zero-one loss

Method I:

ERMH

Sample complexity is d
ε2

Varun Kanade and Thomas Steinke (2011): If RP6=NP, it is not
possible to efficiently find an ε-accurate permutation

Claim: If m ≥ d2/ε2 it is possible to find a predictor with error ≤ ε in
polynomial time
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Agnostic learning Preferences

Let H(n) be the set of all functions from X to Y
ERMH(n) can be computed efficiently

Sample complexity: V C(H(n))/ε2 = d2/ε2

Improper learning

H

H(n)
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Sample-Computational Tradeoff

?Time

Samples

ERMH

ERMH(n)

Samples Time

ERMH d d!
ERMH(n) d2 d2
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Is this the best we can do?

Analysis is based on upper bounds

Is it possible to (improperly) learn efficiently with d log(d) examples ?
Posed as an open problem by:

Jake Abernathy (COLT’10)
Kleinberg, Niculescu-Mizil, Sharma (Machine Learning 2010)

Hazan, Kale, S. (COLT’12):

Can learn efficiently with d log3(d)
ε2 examples
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Sample-Computational Tradeoff

Time

Samples

ERMH

HKS ERMH(n)

Samples Time

ERMH d d!
HKS d log3(d) d4 log3(d)
ERMH(n) d2 d2
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HKS: Proof idea

Each permutation π can be written as a matrix, s.t.,

W (i, j) =

{
1 if π(i) < π(j)

0 o.w.

Definition: matrix is (β, τ) decomposable if its symmetrization can be
written as P −N where P,N are PSD, have trace bounded by τ , and
diagonal entries bounded by β

Theorem: There’s an online algorithm with regret of
√
τβ log(d)T for

predicting the elements of (β, τ)-decomposable matrices

Lemma: Permutation matrices are (log(d), d log(d)) decomposable.
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Outline

The Sample-Computational tradeoff:

Agnostic learning of preferences X

Learning margin-based halfspaces

Formally establishing the tradeoff
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Learning Margin-Based Halfspaces

Goal: Find hS : X → {±1} such that

P[hS(x) 6= y] ≤ (1 + α) min
w:‖w‖=1

P[y〈w, x〉 ≤ γ] + ε

Known results:

α Samples Time

Ben-David and Simon 0 1
γ2 ε2

exp(1/γ2)

SVM (Hinge-loss) 1
γ

1
γ2 ε2

poly(1/γ)

Trading approximation factor for runtime

What if α ∈ (0, 1/γ) ?
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Learning Margin-Based Halfspaces

Theorem (Birnbaum and S., NIPS’12)

Can achieve α-approximation using time and sample complexity of

poly(1/γ) · exp
(

4
(γ α)2

)
Corollary

Can achieve α = 1

γ
√

log(1/γ)
in polynomial time
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Proof Idea

SVM relies on the hinge-loss as a convex surrogate:

`(w, (x, y)) =
[
1− y 〈w,x〉γ

]
+

Compose the hinge-loss over a polynomial [1− yp(〈w, x〉)]+

-1 1γ

But now the loss function is non convex ...
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Proof Idea (Cont.)

Let p(x) =
∑

j βjx
j be the polynomial

Original class: H = {x 7→ p(〈w, x〉) : ‖w‖ = 1}
Define kernel: k(x, x′) =

∑
j |βj |(〈x, x′〉)j

New class: H(n) = {x 7→ 〈v,Ψ(x)〉 : ‖v‖ ≤ B} where Ψ is the
mapping corresponds to the kernel

ERMH(n) can be computed efficiently (due to convexity)

Sample complexity: B2/ε2

H

H(n)
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Can we do better ?

Theorem (Daniely, Lineal, S. 2012)

For every kernel, SVM cannot obtain α < 1
γ poly(log(γ)) with poly(1/γ)

samples. A similar lower bound holds for any feature-based mapping (not
necessarily kernel-based).

Open problem: lower bounds for other techniques / any technique ?
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Proof ideas

A one dimensional problem: D = (1− λ)D1 + λD2

xo

Every low degree polynomial with hinge-loss smaller than 1 must have
p(γ) ≈ p(−γ).

Pull back the distribution to high dimension

Use a characterization of Hilbert spaces corresponding to symmetric
kernels, from which we can write f using Legendre polynomials and
reduce to the 1-dim case

By averaging the kernel over the group of linear isometries of Rd, we
relax the assumption that the kernel is symmetric
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Outline

The Sample-Computational tradeoff:

Agnostic learning of preferences X

Learning margin-based halfspaces X

Formally establishing the tradeoff
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Formal Derivation of Gaps

Theorem (Shamir, S., Tromer 2012): Assume one-way permutations exist,
there exists an agnostic learning problem such that:

TH,ε(m)

2n + 1
ε2

> poly(n)

n3

ε6

m
n
ε2log(n)1

ε2
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Proof: One Way Permutations

P : {0, 1}n → {0, 1}n is one-way permutation if it’s one-to-one and

It is easy to compute w = P (s)

It is hard to compute s = P−1(w)

Goldreich-Levin Theorem: If P is one way, then for any algorithm A,

∃w s.t. P
r
[A(r, P (w)) = 〈r,w〉] < 1

2
+

1

poly(n)
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Proof: The Learning Problem

The Domain

Let P be a one-way permutation.

X = {0, 1}2n,Y = {0, 1}
Domain: Z ⊂ X × Y

((r, s), b) ∈ Z iff 〈P−1(s), r〉 = b

(Inner product over GF(2))
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Proof: The Learning Problem

The Hypothesis Class

H = {hw : w ∈ {0, 1}n} where hw : X → [0, 1] is

hw(r, s) =

{
〈w, r〉 if s = P (w)

1/2 o.w.

The Loss Function:

Absolute loss (= expected 0-1)

`(h, ((r, s), b)) = |h(r, s)− b|

=

{
0 if s = P (w)

1/2 o.w.

Note: LD(hw) = P[s 6= P (w)] · 12
Agnostic: LD(hw) = 0 only if P[s = P (w)] = 1
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Proof of Second Claim

2n + 1
ε2

> poly(n)
n3

ε6

m
n
ε2log(n)1

ε2

Suppose we can learn with m = O(log(n)) examples

∀w, define Dw s.t. r is uniform, s = P (w), and b = 〈r,w〉
To generate an i.i.d. training set from Dw:

Pick r1, . . . , rm and b1, . . . , bm at random
If bi = 〈ri,w〉 for all i we’re done
This happens w.p. 1/2m = 1/poly(n)

Feed the training set to the learner, to get hw′(r, P (w)) ≈ 〈r,w〉
Goldreich-Levin theorem ⇒ contradiction
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Proof of First Claim

2n + 1
ε2

> poly(n)
n3

ε6

m
n
ε2log(n)1

ε2

Recall: LD(hw) = P[s 6= P (w)] · 12 = P[P−1(s) 6= w] · 12
Problem reduces to multiclass prediction with hypothesis class of
constant predictors

Sample complexity is 1/ε2
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Proof of Third Claim

2n + 1
ε2

> poly(n)
n3

ε6

m
n
ε2log(n)1

ε2

H

H(n)

Original class:

hw(r, s) =

{
〈w, r〉 if s = P (w)

1/2 o.w.

New class:

h((r1,s′),b1),...,((rm′ ,s′),bm′ )(r, s) =

{∑
i αibi if r =

∑
i αiri ∧ s = s′

1/2 o.w.

New class is efficiently learnable with m = n/ε2
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Summary

The Bias-Variance tradeoff is well understood

We study the Sample-Computational tradeoff

More data can reduce runtime

Open Questions

Other techniques to control the tradeoff

Stronger lower bounds for real-world problems
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