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Agnostic PAC Learning

@ Hypothesis class H C yr

@ Loss function: £:H x (X xY) =R

@ D - unknown distribution over X x Y

True risk: Lp(h) = ]E(Ly)wp[ﬂ(h, (z,y))]
Training set: S = (X1,%1),---, (Xm, Ym) i pm
Goal: use S to find hg s.t. with high probability,

Lp(he) < min Lp(h
D S)_ggﬁ p(h) + €

o ERM rule:

1
ERM(S) € argmin Lg(h) := — Zf(h, (3, 9i))
heH mi=
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Error Decomposition

h* = argmin Lp(h) ; ERM(S) = argmin Lg(h)
heH heH

Lp(hs) = Lp(h*) + Lp(ERM(S)) — Lp(h*)

approximation estimation

o Bias-Complexity tradeoff: Larger H decreases approximation error but
increases estimation error
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3-term Error Decomposition (Bottou & Bousquet’ 08)

h* = argmin Lp(h) ; ERM(S) = argmin Lg(h)
heH heH
LD(hS) = Lp(h*) -+ LD(ERM(S)) — LD(h*)
~—
approximation estimation
+ Lp(hs) — Lp(ERM(S))

optimization

o Bias-Complexity tradeoff: Larger H decreases approximation error but
increases estimation error
@ What about optimization error ?

o Two resources: samples and runtime
o Sample-Computational complexity (Decatur, Goldreich, Ron '98)
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Joint Time-Sample Complexity

Goal:

Lp(hs) < minLD(h) + €
heH
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Joint Time-Sample Complexity

Goal:
Lp(hs) < minLD(h) + €
heH

@ Sample complexity: How many examples are needed ?
@ Time complexity: How much time is needed ?
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Joint Time-Sample Complexity

Goal:
Lp(hs) < minLD(h) + €
heH

@ Sample complexity: How many examples are needed ?
@ Time complexity: How much time is needed ?

Time-sample complexity

T3,e(m) = how much time is needed when |S| =m ?

TH,E 4

7

1sample complexity
LR

Shai Shalev-Shwartz (Hebrew U) Sample-Computational Tradeoff NIPS'2012 5/28



The Sample-Computational tradeoff:
@ Agnostic learning of preferences
@ Learning margin-based halfspaces
@ Formally establishing the tradeoff
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Agnostic learning Preferences

The Learning Problem:
o X =1[d x[d,Yy=1{01}
e Given (i,j) € X predict if i is preferable over j
e 7 is all permutations over [d]

@ Loss function = zero-one loss
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Agnostic learning Preferences

The Learning Problem:
o X =[d x|, Y=1{01}
e Given (i,j) € X predict if i is preferable over j
e 7 is all permutations over [d]
@ Loss function = zero-one loss
Method I:
e ERMy
d

@ Sample complexity is 5
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Agnostic learning Preferences

The Learning Problem:
o X =1[d] x[d],Y={0,1}
e Given (i,j) € X predict if i is preferable over j
e 7 is all permutations over [d]
@ Loss function = zero-one loss
Method I:
e ERMy
@ Sample complexity is 6%
e Varun Kanade and Thomas Steinke (2011): If RP#NP, it is not
possible to efficiently find an e-accurate permutation
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Agnostic learning Preferences

The Learning Problem:
o X =1[d] x[d],Y={0,1}
e Given (i,j) € X predict if i is preferable over j
e 7 is all permutations over [d]
@ Loss function = zero-one loss
Method I:
e ERMy
@ Sample complexity is 6%
e Varun Kanade and Thomas Steinke (2011): If RP#NP, it is not
possible to efficiently find an e-accurate permutation

o Claim: If m > d?/é? it is possible to find a predictor with error < ¢ in
polynomial time
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Agnostic learning Preferences

Let (™ be the set of all functions from X to )
ERMy,(») can be computed efficiently
Sample complexity: VC(H(™)/e? = d? /e

Improper learning

,H,Uﬂ
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Sample-Computational Tradeoff

‘ Samples ‘ Time
d d!
d? d?

ERM>,

Time

Samples
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Is this the best we can do?

@ Analysis is based on upper bounds
@ Is it possible to (improperly) learn efficiently with dlog(d) examples ?
Posed as an open problem by:

o Jake Abernathy (COLT'10)
o Kleinberg, Niculescu-Mizil, Sharma (Machine Learning 2010)
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Is this the best we can do?

@ Analysis is based on upper bounds

@ Is it possible to (improperly) learn efficiently with dlog(d) examples ?
Posed as an open problem by:
o Jake Abernathy (COLT'10)
o Kleinberg, Niculescu-Mizil, Sharma (Machine Learning 2010)
e Hazan, Kale, S. (COLT'12):

3
o Can learn efficiently with dl%z(d) examples
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Sample-Computational Tradeoff

‘ Samples ‘ Time
ERMy d d!
HKS dlog®(d) | d*log?(d)
Time ERMy;n) d? d?
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HKS: Proof idea

@ Each permutation 7w can be written as a matrix, s.t.,

1 ifw(d) < m(y)

0 o.w.

W(Zaj) - {

@ Definition: matrix is (3, 7) decomposable if its symmetrization can be
written as P — N where P, N are PSD, have trace bounded by 7, and
diagonal entries bounded by 5

@ Theorem: There's an online algorithm with regret of /75 log(d)T for
predicting the elements of (3, 7)-decomposable matrices

e Lemma: Permutation matrices are (log(d), dlog(d)) decomposable.
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The Sample-Computational tradeoff:
@ Agnostic learning of preferences v/
@ Learning margin-based halfspaces
@ Formally establishing the tradeoff
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Learning Margin-Based Halfspaces

e Goal: Find hg : X — {£1} such that

Plhs(z) #y] < (1+a) min Ply(w,z) <q]+e

wil|w]=1
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Learning Margin-Based Halfspaces

e Goal: Find hg : X — {1} such that

Plhs(z) #y] < (1+a) min Ply(w,z) <q]+e

w:f|wl|=1
@ Known results:
‘ @ ‘ Samples ‘ Time
Ben-David and Simon | 0 WZ% exp(1/9%)
SVM (Hinge-loss) % 72% poly(1/7)

@ Trading approximation factor for runtime
o What if a € (0,1/7) ?
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Learning Margin-Based Halfspaces

Theorem (Birnbaum and S., NIPS'12)

Can achieve a-approximation using time and sample complexity of

poly(1/v) - exp (ﬁ)

1 . . .
————— in polynomial time
74/ log(1/7) P

Can achieve oo =
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Proof ldea

@ SVM relies on the hinge-loss as a convex surrogate:
fw, (2,)) = [1 -y
RS
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Proof ldea

@ SVM relies on the hinge-loss as a convex surrogate:
fw, (2,)) = [1 -y
RS

e Compose the hinge-loss over a polynomial [1 — yp({w, x))]+

-’
’
-’
-’
-,
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Proof ldea

@ SVM relies on the hinge-loss as a convex surrogate:
fw, (2,)) = [1 -y
RS

e Compose the hinge-loss over a polynomial [1 — yp({w, x))]+

-’
’
-’
-’
-,

@ But now the loss function is non convex ...
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Proof Idea (Cont.)

Let p(x) = >_, B2’ be the polynomial
Original class: H = {z — p((w, z)) : HwH =1}
Define kernel: ( a') =32, 1851 ((z, x'))7

New class: H(™ = {z s (v, ¥(z)) : ||[v|| < B} where ¥ is the
mapping corresponds to the kernel

ERM,,(») can be computed efficiently (due to convexity)
Sample complexity: B2/¢?

,H(M
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Can we do better ?

Theorem (Daniely, Lineal, S. 2012)

. 1 .
For every kernel, SVM cannot obtain o < 7 poly (a7 with poly(1/~)

samples. A similar lower bound holds for any feature-based mapping (not
necessarily kernel-based).

@ Open problem: lower bounds for other techniques / any technique ?
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@ A one dimensional problem: D = (1 — \)D; + ADy

- X0 -

@ Every low degree polynomial with hinge-loss smaller than 1 must have
p(7) = p(—).

@ Pull back the distribution to high dimension

@ Use a characterization of Hilbert spaces corresponding to symmetric

kernels, from which we can write f using Legendre polynomials and
reduce to the 1-dim case

@ By averaging the kernel over the group of linear isometries of R%, we
relax the assumption that the kernel is symmetric
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The Sample-Computational tradeoff:
@ Agnostic learning of preferences v/
@ Learning margin-based halfspaces v/
@ Formally establishing the tradeoff
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Formal Derivation of Gaps

Theorem (Shamir, S., Tromer 2012): Assume one-way permutations exist,
there exists an agnostic learning problem such that:

Ty .e(m)
"+ 5+
> poly(n) 4+ T
nd |
€0 I
| | —
% log(n) =
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Proof: One Way Permutations

P :{0,1}" — {0,1}™ is one-way permutation if it's one-to-one and
@ It is easy to compute w = P(s)
e It is hard to compute s = P~ !(w)

©
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Proof: One Way Permutations

P :{0,1}" — {0,1}™ is one-way permutation if it's one-to-one and
@ It is easy to compute w = P(s)
e It is hard to compute s = P~ !(w)

©

>
J
Goldreich-Levin Theorem: If P is one way, then for any algorithm A,
1 1
Jw s.t. P[A(r, P = -4+ —
w st PIA(r, P(w) = (1. w)] < 5+ s
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Proof: The Learning Problem

The Domain
@ Let P be a one-way permutation.
o X ={0,1}>"y ={0,1}
@ Domain: ZC A x)Y
o ((r,s),b) € Z iff (P71(s),r) =b

@ (Inner product over GF(2))
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Proof: The Learning Problem

The Hypothesis Class
o H={hw:we{0,1}"} where hy, : X — [0,1] is

= He=rtw

The Loss Function:

@ Absolute loss (= expected 0-1)

f(h, ((I‘, S)’b)) = ‘h(r’ S) - b‘
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Proof: The Learning Problem

The Hypothesis Class
o H={hw:we{0,1}"} where hy, : X — [0,1] is

= He=rtw

The Loss Function:

@ Absolute loss (= expected 0-1)

0 if s=P(w)
1/2 o.w.

((h,((r,s),b)) = |h(r,s) — b] = {

e Note: Lp(hw) =P[s # P(w)] - %
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Proof: The Learning Problem

The Hypothesis Class

o H={hw:we{0,1}"} where hy, : X — [0,1] is

ifs=P
ey (1, 8) = (w,r) ifs (w)
1/2 o.W.
The Loss Function:

@ Absolute loss (= expected 0-1)

(b ((r.5),b)) = [h(r,s) — b = {0 ifs = P(w)

1/2 ow.
e Note: Lp(hw) =P[s # P(w)] - %
e Agnostic: Lp(hw) =0 only if P[s = P(w)] =1
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Proof of Second Claim

"+ %
> poly(n) £
n3
¢ 22
| | —> m
1 log(n) 3
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Proof of Second Claim

"+ %
> poly(n) *
n?
¢ ¥
: : — m
& log(n) =

€

@ Suppose we can learn with m = O(log(n)) examples
e Vw, define Dy, s.t. r is uniform, s = P(w), and b = (r, w)
@ To generate an i.i.d. training set from Dy,:
e Pickry,...,r,, and by,...,b,, at random
o If b; = (r;,w) for all i we're done
e This happens w.p. 1/2™ = 1/poly(n)
@ Feed the training set to the learner, to get hy/(r, P(w)) =~ (r,w)

@ Goldreich-Levin theorem = contradiction
NIPS'2012 25 /' 28
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Proof of First Claim

2m + 4
> poly(n) =
n3
6 82
} } — m
L log(n) &

€

o Recall: Lp(hw) =P[s # P(w)]- 1 =P[P7!(s) # w] - §

@ Problem reduces to multiclass prediction with hypothesis class of
constant predictors

@ Sample complexity is 1/€>
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Proof of Third Claim

2" + 4
> poly(n) —
n3
€6 ¥
| | — m
L log(n) 3
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Proof of Third Claim
,H(M

2" + 4
> poly(n) —
n3
€6 ¥
| | — m
L log(n) 3
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Proof of Third Claim

2"+ % )
> poly(n) — H"
n3
€6 ¥
| | — m
5 log(n) =

€

@ Original class:

@ New class:
B {Ziaibi ifr=> airiANs=¢

h ri,s’ r s ’ ’ -
(01,8001 s (F 1 )by ) (58) 1/2 0.W.

@ New class is efficiently learnable with m = n /e
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@ The Bias-Variance tradeoff is well understood
@ We study the Sample-Computational tradeoff

@ More data can reduce runtime

Open Questions
@ Other techniques to control the tradeoff

@ Stronger lower bounds for real-world problems
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