The Sample-Computational Tradeoff

Shai Shalev-Shwartz

School of Computer Science and Engineering The Hebrew University of Jerusalem

NIPS Multi-Trade-Offs Workshop,
December 2012

Based on joint work with:

- Satyen Kale and Elad Hazan (COLT'2012)
- Aharon Birnbaum (NIPS'2012)
- Amit Daniely and Nati Linial (on arxiv)
- Ohad Shamir and Eran Tromer (AISTATS'2012)

Agnostic PAC Learning

- Hypothesis class $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$
- Loss function: $\ell: \mathcal{H} \times(\mathcal{X} \times \mathcal{Y}) \rightarrow \mathbb{R}$
- \mathcal{D} - unknown distribution over $\mathcal{X} \times \mathcal{Y}$
- True risk: $L_{\mathcal{D}}(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\ell(h,(x, y))]$
- Training set: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{D}^{m}$
- Goal: use S to find h_{S} s.t. with high probability,

$$
L_{\mathcal{D}}\left(h_{S}\right) \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- ERM rule:

$$
\operatorname{ERM}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h):=\frac{1}{m} \sum_{i=1}^{m} \ell\left(h,\left(x_{i}, y_{i}\right)\right)
$$

Error Decomposition

$$
\begin{gathered}
h^{\star}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{\mathcal{D}}(h) \quad ; \quad \operatorname{ERM}(S)=\underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h) \\
L_{\mathcal{D}}\left(h_{S}\right)=\underbrace{L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {approximation }}+\underbrace{L_{\mathcal{D}}(\operatorname{ERM}(S))-L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {estimation }}
\end{gathered}
$$

- Bias-Complexity tradeoff: Larger \mathcal{H} decreases approximation error but increases estimation error

3-term Error Decomposition (Bottou \& Bousquet' 08)

$$
\begin{aligned}
& h^{\star}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{\mathcal{D}}(h) \quad ; \quad \operatorname{ERM}(S)=\underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h) \\
& h \in \mathcal{H} \\
& h \in \mathcal{H} \\
& L_{\mathcal{D}}\left(h_{S}\right)=\underbrace{L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {approximation }}+\underbrace{L_{\mathcal{D}}(\operatorname{ERM}(S))-L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {estimation }} \\
& +\underbrace{L_{\mathcal{D}}\left(h_{S}\right)-L_{\mathcal{D}}(\operatorname{ERM}(S))}_{\text {optimization }}
\end{aligned}
$$

- Bias-Complexity tradeoff: Larger \mathcal{H} decreases approximation error but increases estimation error
- What about optimization error ?
- Two resources: samples and runtime
- Sample-Computational complexity (Decatur, Goldreich, Ron '98)

Joint Time-Sample Complexity

Goal:

$$
L_{\mathcal{D}}\left(h_{S}\right) \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

Joint Time-Sample Complexity

Goal:

$$
L_{\mathcal{D}}\left(h_{S}\right) \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Sample complexity: How many examples are needed ?
- Time complexity: How much time is needed ?

Joint Time-Sample Complexity

Goal:

$$
L_{\mathcal{D}}\left(h_{S}\right) \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Sample complexity: How many examples are needed ?
- Time complexity: How much time is needed ?

Time-sample complexity

$T_{\mathcal{H}, \epsilon}(m)=$ how much time is needed when $|S|=m$?

Outline

The Sample-Computational tradeoff:

- Agnostic learning of preferences
- Learning margin-based halfspaces
- Formally establishing the tradeoff

Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function $=$ zero-one loss

Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [$d]$
- Loss function $=$ zero-one loss

Method I:

- $\mathrm{ERM}_{\mathcal{H}}$
- Sample complexity is $\frac{d}{\epsilon^{2}}$

Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function $=$ zero-one loss

Method I:

- $\mathrm{ERM}_{\mathcal{H}}$
- Sample complexity is $\frac{d}{\epsilon^{2}}$
- Varun Kanade and Thomas Steinke (2011): If RP $\neq N P$, it is not possible to efficiently find an ϵ-accurate permutation

Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function $=$ zero-one loss

Method I:

- $\mathrm{ERM}_{\mathcal{H}}$
- Sample complexity is $\frac{d}{\epsilon^{2}}$
- Varun Kanade and Thomas Steinke (2011): If RP $\neq N P$, it is not possible to efficiently find an ϵ-accurate permutation
- Claim: If $m \geq d^{2} / \epsilon^{2}$ it is possible to find a predictor with error $\leq \epsilon$ in polynomial time

Agnostic learning Preferences

- Let $\mathcal{H}^{(n)}$ be the set of all functions from \mathcal{X} to \mathcal{Y}
- $\mathrm{ERM}_{\mathcal{H}^{(n)}}$ can be computed efficiently
- Sample complexity: $V C\left(\mathcal{H}^{(n)}\right) / \epsilon^{2}=d^{2} / \epsilon^{2}$
- Improper learning

Sample-Computational Tradeoff

	Samples	Time
$\operatorname{ERM}_{\mathcal{H}}$	d	$d!$
$\operatorname{ERM}_{\mathcal{H}^{(n)}}$	d^{2}	d^{2}

Is this the best we can do?

- Analysis is based on upper bounds
- Is it possible to (improperly) learn efficiently with $d \log (d)$ examples ? Posed as an open problem by:
- Jake Abernathy (COLT'10)
- Kleinberg, Niculescu-Mizil, Sharma (Machine Learning 2010)

Is this the best we can do?

- Analysis is based on upper bounds
- Is it possible to (improperly) learn efficiently with $d \log (d)$ examples ? Posed as an open problem by:
- Jake Abernathy (COLT'10)
- Kleinberg, Niculescu-Mizil, Sharma (Machine Learning 2010)
- Hazan, Kale, S. (COLT'12):
- Can learn efficiently with $\frac{d \log ^{3}(d)}{\epsilon^{2}}$ examples

Sample-Computational Tradeoff

	Samples	Time
$\mathrm{ERM}_{\mathcal{H}}$	d	$d!$
HKS	$d \log ^{3}(d)$	$d^{4} \log ^{3}(d)$
$\operatorname{ERM}_{\mathcal{H}^{(n)}}$	d^{2}	d^{2}

HKS: Proof idea

- Each permutation π can be written as a matrix, s.t.,

$$
W(i, j)= \begin{cases}1 & \text { if } \pi(i)<\pi(j) \\ 0 & \text { o.w. }\end{cases}
$$

- Definition: matrix is (β, τ) decomposable if its symmetrization can be written as $P-N$ where P, N are PSD, have trace bounded by τ, and diagonal entries bounded by β
- Theorem: There's an online algorithm with regret of $\sqrt{\tau \beta \log (d) T}$ for predicting the elements of (β, τ)-decomposable matrices
- Lemma: Permutation matrices are $(\log (d), d \log (d))$ decomposable.

Outline

The Sample-Computational tradeoff:

- Agnostic learning of preferences \checkmark
- Learning margin-based halfspaces
- Formally establishing the tradeoff

Learning Margin-Based Halfspaces

- Goal: Find $h_{S}: \mathcal{X} \rightarrow\{ \pm 1\}$ such that

$$
\mathbb{P}\left[h_{S}(x) \neq y\right] \leq(1+\alpha) \min _{w:\|w\|=1} \mathbb{P}[y\langle w, x\rangle \leq \gamma]+\epsilon
$$

Learning Margin-Based Halfspaces

- Goal: Find $h_{S}: \mathcal{X} \rightarrow\{ \pm 1\}$ such that

$$
\mathbb{P}\left[h_{S}(x) \neq y\right] \leq(1+\alpha) \min _{w:\|w\|=1} \mathbb{P}[y\langle w, x\rangle \leq \gamma]+\epsilon
$$

- Known results:

	α	Samples	Time
Ben-David and Simon	0	$\frac{1}{\gamma^{2} \epsilon^{2}}$	$\exp \left(1 / \gamma^{2}\right)$
SVM (Hinge-loss)	$\frac{1}{\gamma}$	$\frac{1}{\gamma^{2} \epsilon^{2}}$	$\operatorname{poly}(1 / \gamma)$

- Trading approximation factor for runtime
- What if $\alpha \in(0,1 / \gamma)$?

Learning Margin-Based Halfspaces

Theorem (Birnbaum and S., NIPS'12)

Can achieve α-approximation using time and sample complexity of

$$
\operatorname{poly}(1 / \gamma) \cdot \exp \left(\frac{4}{(\gamma \alpha)^{2}}\right)
$$

Corollary

Can achieve $\alpha=\frac{1}{\gamma \sqrt{\log (1 / \gamma)}}$ in polynomial time

Proof Idea

- SVM relies on the hinge-loss as a convex surrogate: $\ell(w,(x, y))=\left[1-y \frac{\langle w, x\rangle}{\gamma}\right]_{+}$

Proof Idea

- SVM relies on the hinge-loss as a convex surrogate:

$$
\ell(w,(x, y))=\left[1-y \frac{\langle w, x\rangle}{\gamma}\right]_{+}
$$

- Compose the hinge-loss over a polynomial $[1-y p(\langle w, x\rangle)]_{+}$

Proof Idea

- SVM relies on the hinge-loss as a convex surrogate:

$$
\ell(w,(x, y))=\left[1-y \frac{\langle w, x\rangle}{\gamma}\right]_{+}
$$

- Compose the hinge-loss over a polynomial $[1-y p(\langle w, x\rangle)]_{+}$

- But now the loss function is non convex ...

Proof Idea (Cont.)

- Let $p(x)=\sum_{j} \beta_{j} x^{j}$ be the polynomial
- Original class: $\mathcal{H}=\{x \mapsto p(\langle w, x\rangle):\|w\|=1\}$
- Define kernel: $k\left(x, x^{\prime}\right)=\sum_{j}\left|\beta_{j}\right|\left(\left\langle x, x^{\prime}\right\rangle\right)^{j}$
- New class: $\mathcal{H}^{(n)}=\{x \mapsto\langle v, \Psi(x)\rangle:\|v\| \leq B\}$ where Ψ is the mapping corresponds to the kernel
- $\mathrm{ERM}_{\mathcal{H}^{(n)}}$ can be computed efficiently (due to convexity)
- Sample complexity: B^{2} / ϵ^{2}

Can we do better ?

> Theorem (Daniely, Lineal, S. 2012)
> For every kernel, SVM cannot obtain $\alpha<\frac{1}{\gamma \operatorname{poly}(\log (\gamma))}$ with $\operatorname{poly}(1 / \gamma)$ samples. A similar lower bound holds for any feature-based mapping (not necessarily kernel-based).

- Open problem: lower bounds for other techniques / any technique ?

Proof ideas

- A one dimensional problem: $\mathcal{D}=(1-\lambda) \mathcal{D}_{1}+\lambda \mathcal{D}_{2}$
- Every low degree polynomial with hinge-loss smaller than 1 must have $p(\gamma) \approx p(-\gamma)$.
- Pull back the distribution to high dimension
- Use a characterization of Hilbert spaces corresponding to symmetric kernels, from which we can write f using Legendre polynomials and reduce to the 1-dim case
- By averaging the kernel over the group of linear isometries of \mathbb{R}^{d}, we relax the assumption that the kernel is symmetric

Outline

The Sample-Computational tradeoff:

- Agnostic learning of preferences \checkmark
- Learning margin-based halfspaces \checkmark
- Formally establishing the tradeoff

Formal Derivation of Gaps

Theorem (Shamir, S., Tromer 2012): Assume one-way permutations exist, there exists an agnostic learning problem such that:

Proof: One Way Permutations

$P:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is one-way permutation if it's one-to-one and

- It is easy to compute $\mathbf{w}=P(\mathbf{s})$
- It is hard to compute $\mathbf{s}=P^{-1}(\mathbf{w})$

Proof: One Way Permutations

$P:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is one-way permutation if it's one-to-one and

- It is easy to compute $\mathbf{w}=P(\mathbf{s})$
- It is hard to compute $\mathbf{s}=P^{-1}(\mathbf{w})$

Goldreich-Levin Theorem: If P is one way, then for any algorithm A,

$$
\exists \mathbf{w} \text { s.t. } \underset{\mathbf{r}}{\mathbb{P}}[A(\mathbf{r}, P(\mathbf{w}))=\langle\mathbf{r}, \mathbf{w}\rangle]<\frac{1}{2}+\frac{1}{\operatorname{poly}(n)}
$$

Proof: The Learning Problem

The Domain

- Let P be a one-way permutation.
- $\mathcal{X}=\{0,1\}^{2 n}, \mathcal{Y}=\{0,1\}$
- Domain: $Z \subset \mathcal{X} \times \mathcal{Y}$
- $((\mathbf{r}, \mathbf{s}), b) \in Z$ iff $\left\langle P^{-1}(\mathbf{s}), \mathbf{r}\right\rangle=b$
- (Inner product over GF(2))

Proof: The Learning Problem

The Hypothesis Class

- $\mathcal{H}=\left\{h_{\mathbf{w}}: \mathbf{w} \in\{0,1\}^{n}\right\}$ where $h_{\mathbf{w}}: \mathcal{X} \rightarrow[0,1]$ is

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

The Loss Function:

- Absolute loss (= expected 0-1)

$$
\ell(h,((\mathbf{r}, \mathbf{s}), b))=|h(\mathbf{r}, \mathbf{s})-b|
$$

Proof: The Learning Problem

The Hypothesis Class

- $\mathcal{H}=\left\{h_{\mathbf{w}}: \mathbf{w} \in\{0,1\}^{n}\right\}$ where $h_{\mathbf{w}}: \mathcal{X} \rightarrow[0,1]$ is

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

The Loss Function:

- Absolute loss (= expected 0-1)

$$
\ell(h,((\mathbf{r}, \mathbf{s}), b))=|h(\mathbf{r}, \mathbf{s})-b|= \begin{cases}0 & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

- Note: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=\mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}$

Proof: The Learning Problem

The Hypothesis Class

- $\mathcal{H}=\left\{h_{\mathbf{w}}: \mathbf{w} \in\{0,1\}^{n}\right\}$ where $h_{\mathbf{w}}: \mathcal{X} \rightarrow[0,1]$ is

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

The Loss Function:

- Absolute loss (= expected 0-1)

$$
\ell(h,((\mathbf{r}, \mathbf{s}), b))=|h(\mathbf{r}, \mathbf{s})-b|= \begin{cases}0 & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

- Note: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=\mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}$
- Agnostic: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=0$ only if $\mathbb{P}[\mathbf{s}=P(\mathbf{w})]=1$

Proof of Second Claim

Proof of Second Claim

- Suppose we can learn with $m=O(\log (n))$ examples
- $\forall \mathbf{w}$, define $\mathcal{D}_{\mathbf{w}}$ s.t. \mathbf{r} is uniform, $\mathbf{s}=P(\mathbf{w})$, and $b=\langle\mathbf{r}, \mathbf{w}\rangle$
- To generate an i.i.d. training set from $\mathcal{D}_{\mathbf{w}}$:
- Pick $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ and b_{1}, \ldots, b_{m} at random
- If $b_{i}=\left\langle\mathbf{r}_{i}, \mathbf{w}\right\rangle$ for all i we're done
- This happens w.p. $1 / 2^{m}=1 / \operatorname{poly}(n)$
- Feed the training set to the learner, to get $h_{\mathbf{w}^{\prime}}(\mathbf{r}, P(\mathbf{w})) \approx\langle\mathbf{r}, \mathbf{w}\rangle$
- Goldreich-Levin theorem \Rightarrow contradiction

Proof of First Claim

- Recall: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=\mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}=\mathbb{P}\left[P^{-1}(\mathbf{s}) \neq \mathbf{w}\right] \cdot \frac{1}{2}$
- Problem reduces to multiclass prediction with hypothesis class of constant predictors
- Sample complexity is $1 / \epsilon^{2}$

Proof of Third Claim

Proof of Third Claim

Proof of Third Claim

- Original class:

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

- New class:

$$
h_{\left(\left(\mathbf{r}_{1}, \mathbf{s}^{\prime}\right), b_{1}\right), \ldots,\left(\left(\mathbf{r}_{\left.\left.m^{\prime}, \mathbf{s}^{\prime}\right), b_{m^{\prime}}\right)}(\mathbf{r}, \mathbf{s})=\left\{\begin{array}{ll}
\sum_{i} \alpha_{i} b_{i} & \text { if } \mathbf{r}=\sum_{i} \alpha_{i} \mathbf{r}_{i} \wedge \mathbf{s}=\mathbf{s}^{\prime} \\
1 / 2 & \text { o.w. }
\end{array}\right. \text { (2) }\right.\right.}
$$

- New class is efficiently learnable with $m=n / \epsilon^{2}$

Summary

- The Bias-Variance tradeoff is well understood
- We study the Sample-Computational tradeoff
- More data can reduce runtime

Open Questions

- Other techniques to control the tradeoff
- Stronger lower bounds for real-world problems

