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(Conditional) Markov Random Fields


 

Undirected GMs with sound theoretical foundation (probability + graph theory).


 

Have been widely applied in many application domains:


 

Natural language processing [Sha

 

& Pereria, 2003; Smith, 2008], Social network [Shi et al., 2009], Web 
mining [Zhu et al., 2006], Bioinformatics [Fu et al., 2009], Computer vision [He et al., 2005],  etc,



 

Consider Conditional MRFs

 

(CRFs) because of their superior performance [Lafferty et 
al., 2001]
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Expensive Subroutine (Infer marginal prob)

Hard on dense graphs; denser means more difficult!
Approximation: Loopy BP, Variational/MCMC.

XY

An Ideal Algorithm for MRFs

1. Perform inference on a very sparse graph
2. Very few gradient calculation to converge
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Two Problems –
 

FS & SL


 

Conditional MRFs

 
(CRFs) can use arbitrary features



 

E.g., in NP-chunking, the total number of features is >3,000,000 (N-

 gram word and N-gram POS tags) [Sha

 
& Pereria, 2003] 



 

Feature Selection (FS): selecting a subset of features


 

E.g., in NP-chunking, 99.9%

 

features can be discarded with <1%

 
performance decrease in F1 score



 

FS in general is good for generalization and model interpretation



 

Hand-crafting MRFs

 
become less applicable as the variety and 

scale of problems increase


 

E.g., in computer vision, it’s hard to specify a structure among many 
patches (regions) in a pre-segmented image



 

Structure Learning (SL): learning the structures of MRFs


 

SL can automatically discover inherent structures underlying complex data
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P1: Feature Selection (FS)


 
FS in general:


 

Selecting an optimal set of features in NP-hard [Weston et al., 2003]
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Approximate approaches:


 

Filter methods [Kira

 

& Rendell, 1992] (Separate)


 

Based on feature ranking (individual predictive power); 


 

A pre-processing step and independent of prediction models (optimal 
under very strict assumptions!) [Guyon

 

& Elisseeff, 2003]


 

Wrapper methods [Kohavi

 

& John, 1997] (Half-integrated)


 

Use learning machine as a black box to score subsets of variables 
according to their predictive power



 

Can waste of resources to do many re-training!


 

Embedded methods (Integrated)


 

Perform FS during the process of training; Usually specific to given 
learning machines



 

Data efficient and Can avoid many re-training!

FS Learning

FS Learning

FS & 
Learning
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FS via L1-norm Regularized Opt.
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Solving a hybrid optimization problem:



 

In CRFs, we consider:


 

M

 
is represented with natural parameters w



 

L(w) is the convex and 2nd-order differentiable log-loss


 

Ω(w) is the L1-norm, which is convex but singular at origin!

min
M 2 H

L(M ) + ¸ Ð(M )

Goodness of fit: 
e.g., training 

error

Measure of model complexity: 
e.g., # of non-zero features

min
w 2 Rd

L(w) + ¸ Ð(w)

0
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P2: Structure Learning (SL) of MRFs


 

How is the graph structure constructed?
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Approximate Approaches:


 

Local heuristic search guided by a scoring function towards 
improving an objective function, e.g., marginal likelihood 
[Parise

 

& Welling, 2006] 


 

Need parameter estimation at each step


 

SL as solving an L1-regularized MCLE problem [Lee et al., 
2006; Wainwright et al., 2006]


 

Joint parameter estimation and structure learning

SL PE

SL & PE
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SL via L1-norm Regularized Opt.
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Each possible edge e

 
is associated with a set of feature functions



 

Perform feature selection by solving L1-regularized MCLE


 

If the weights of                  are zero, the edge e

 
doesn’t exist



 

Consider all features together will result in a complete graph!

f f e
k (x ; y eg

f f e
k (x ; y eg

min
w 2 Rd

L (w) + ¸ kwk

e

f f e
k (x ; y eg
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Solving the L1-regularized Opt. in MRFs



 

Batch Methods (all features considered together):


 

Many examples:


 

Quasi-Newton gradient descent methods (OWL-QN) [Andrew & Gao, 2007]


 

Gradient descent + L1-ball projection [Duchi

 

et al., 2008]


 

Stochastic gradient descent [Vishvanathan

 

et al., 2006; Tsuruoka

 

et al., 2009]


 

Gauss-Seidel co-ordinate descent [Shevade

 

& Keerthi, 2003]


 

Can scale up to millions of features, e.g., OWL-QN


 

Not applicable for structure learning


 

Inference on complete graphs can be extremely slow and inaccurate!



 

Incremental Methods:


 

Start from simple (sparse) model, iteratively add new features


 

Example: Grafting [Perkins et al., 2003]
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min
w 2 Rd

L (w) , L (w) + ¸ kwk
An Ideal Algorithm for MRFs

1. Perform inference on a very sparse graph
2. Very few gradient calculation to converge

Grafting-Light

Fast, Incremental Algorithm
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Grafting-Light
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Two-step iterative procedure


 

One-step orthant-wise gradient 
descent over working set S



 

Select top M features from the 
set G

 

and add them to S


 

aG = f f k : f k 2 U; and j@k L(w)j > ¸ g

min
w 2 Rd

L (w) , L (w) + ¸ kwk

@kL(w) =

@kL(w) + ¸ sgn(wk); wk 6= 0
@kL(w) + ¸ ; wk = 0;@kL(w) < ¡ ¸
@kL(w) ¡ ¸ ; wk = 0;@kL(w) > ¸

0; wk = 0;j@kL(w)j · ¸



 

is differentiable at one orthant


 

Choose an orthant

 

into which                     leads 



 

Choose a step-size with backtracking line search



 

Update model weights



 

a

L (w )

w t + 1 = ¦ (w t + ®dt ; e)

8k; ek = sgn(wk ); wk 6= 0
sgn(¡ @k L (w )); wk = 0

dt = ¦ (H t pt ; e)

8k; ¦ k (¹ ; v) = ¹ k ; sgn(¹ k ) = sgn(vk )
0; otherwise

@L ( w t )



 

M is the Select Unit


 

Choose from inactive features that violate the optimal 
conditions



 

a
8k ; @k L (w ) + ¸ sgn (wk ) = 0; wk 6= 0

j@k L (w ) j · ¸ ; ot herwise

0
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Grafting-Light
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Thrm: when L(w) is convex, bounded below, and continuously 
differentiable, Grafting-Light converges to the global optimum.



 

Connections to existing algorithms:


 

A lazy version of the incremental Grafting (converge faster!)



 

An incremental version of the batch OWL-QN [Andrew & Gao, 
2007] (suitable for learning structures of MRFs)

Grafting-Light Grafting
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Experimental Results


 

Tasks:


 

Synthetic data on sequence labeling


 

NP Chunking on CoNLL-2000 data


 

Structure learning of MRFs

 
on OCR characters



 

Algorithms to compare:


 

Incremental

 
Grafting [Perkins et al., 2003]



 

Batch

 
quasi-Newton method [Andrew & Gao, 2007] (Full-L1-Opt.)



 

Batch

 
co-ordinate Gauss-Seidel [Shevade

 
& Keerthi, 2003]



 

Implementation


 

Standard PC with Intel 2.00 GHz processor


 

C++ programming language

2010-8-1711 SIGKDD 2010, Washington DC, USA



School of Computer Science

Synthetic Sequence Labeling



 

Grafting-L performs as good as optimal Full-Opt-L1 (exact gradient and all info used! Expected to be fasted!)


 

Grafting-L is much more efficient than greedy Grafting and co-ordinate Gauss-Seidel (fewer number of gradient 
computation). 



 

During training, Grafting-L may include redundant features, but these can be effectively removed  when converge!


 

Greedy Grafting and Gauss-Seidel can under-fit the data, i.e., selecting  fewer number of features.
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# Features:  2000 state features + 4 pairwise

 

dependency features


 

Linear-Chain CRFs: Gradients and Objective can be exactly computed 
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NP-Chunking on CoNLL-2000



 

Grafting-L performs as good as batch Full-Opt-L1,(exact gradient computation!)


 

Grafting-L is much more efficient than greedy Grafting and co-ordinate Gauss-Seidel (fewer number of gradient 
computation). 



 

During training, Grafting-L may include redundant features, but these can be effectively removed  when converge!


 

Greedy Grafting can under-fit the data, i.e., selecting  fewer number of features and degenerate the performance
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# Features:  > 3M (e.g., unigram, bigram word pairs and POS tag pairs, etc.) [Sha

 

& Pereria, 2003]



 

Linear-Chain CRFs: Gradients and Objective function can be exactly computed by using message-passing

Under-fitting:
Grafting degenerates performance!

99.9% features can be 
discarded!
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Structure Learning of MRFs


 

Performance of different methods on different OCR characters, e.g., S, I, G:


 

20 x 20 images; Total features: >80,000



 

Grafting-Light is consistently more efficient than Grafting and Full-Opt.-L1


 

Greedy Grafting needs much more number of gradient computation


 

Gradient computation in Full-Opt.-L1 is expensive due to the difficult inference on complete graph


 

Incremental methods consistently more efficient and accurate than batch methods


 

Full-Opt.-L1 do expensive inference on complete graphs and gradients can be very inaccurate!

2010-8-1714 SIGKDD 2010, Washington DC, USA



School of Computer Science

Structure Learning of MRFs


 

Performance change against Select-Unit (# features selected at each iteration)
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Grafting-Light is consistently more efficient than Grafting and Full-Opt.-L1


 

Greedy Grafting needs much more number of gradient computation


 

Gradient computation in Full-Opt.-L1 is expensive due to the difficult inference on complete graph


 

Incremental methods consistently more efficient and accurate than batch methods


 

Full-Opt.-L1 do expensive inference on complete graphs and gradients can be very inaccurate!

The batch Full-Opt.-L1 doesn’t achieve sparse 
structures because of inaccurate gradients!
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Structure Learning of MRFs


 

Average image produced from the learned model by different 
algorithms



 

The batch Full-Opt.-L1 produces blurry images because of inaccurate 
gradient computation

 

on complete graphs (Non-sparse results!)

“ACMSIG”

Grafting-Light:

Grafting:

Full-Opt.L1:
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Conclusions & Future Work


 

Conclusions:


 

We present Grafting-Light: a fast, incremental algorithm for solving the L1-

 
regularized MLE for FS and SL of MRFs



 

We show that:


 

Incremental methods are better than batch methods for feature selection and structure 
learning of MRFs



 

Message-passing on complete graphs can lead to inaccurate gradients or marginals, 
which are not good for feature selection or structure learning



 

Grafting-Light is more efficient than the greedy Grafting algorithm



 

Future Work:


 

Convergence rate and time complexity analysis


 

Apply to solve non-convex problems, e.g., learning structures of MRFs

 

with 
latent variables



 

Regularization path analysis and comparison with more existing methods, 
e.g., stochastic gradient descent,  etc.
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Thank you!
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