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(Conditional) Markov Random Fields

* Undirected GMs with sound theoretical foundation (probability + graph theory).

An Ideal Algorithm for MRFs

1. Perform inference on a Very sparse graph

2. Very few gradient calculation to converge

Gradient Computation is a Key & Difficult Step:

@@(VV:) = > Epyepm Fknsye)li D fi(XniYnie)

Expensive Subroutine (Infer marginal prob)

) 1 X v o
p(yjx) = 700 exp w”f(X;ye) Hard on dense graphs; denser means more difficult!
2C Approximation: Loopy BP, Variational/ MCMC.
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Two Problems - FS & SL

* Conditional MRFs (CRFs) can use arbitrary features
® E.g., in NP-chunking, the total number of features is >3,000,000 (N-
gram word and N-gram POS tags) [Sha & Pereria, 2003]

® Feature Selection (FS): selecting a subset of features
E.g., in NP-chunking, 99.9% features can be discarded with <1%

performance decrease in F1 score

nelligence & INtegrative Genomics

FS in general is good for generalization and model interpretation

* Hand-crafting MRFs become less applicable as the variety and
scale of problems increase
* E.g., in computer vision, it’s hard to specity a structure among many
patches (regions) in a pre-segmented image
® Structure Learning (SL): learning the structures of MRFs

SL can automatically discover inherent structures underlying complex data

@ SIGKDD 2010, Washington DC, USA 2010-8-17 /
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P1: Feature Selection (FS)

* FSin general:
® Selecting an optimal set of features in NP-hard [Weston et al., 2003]

® Approximate approaches:

* Filter methods [Kira & Rendell, 1992] (Separate) . L :
Based on feature ranking (individual predictive power); carning

A pre-processing step and independent of prediction models (optimal
under very strict assumptions!) [Guyon & Elisseeff, 2003]

® Wrapper methods [Kohavi & John, 1997] (Half-integrated)
Use learning machine as a black box to score subsets of variables T Learning

according to their predictive power

Can waste of resources to do many re-training!

* Embedded methods (Integrated)

Perform FS during the process of training; Usually specific to given FS &
learning machines — .
Data efficient and Can avoid many re-training! Learnlng

a SIGKDD 2010, Washington DC, USA 2010-8-17
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FS via L1-norm Regularized Opt.

° Solving a hybrid optimization problem:

I\I/’Inzlﬂ L(M) + | D(‘M)

oodness of fit:

e.g., trainin
& S e.g., # of non-zero features

® In CRFs, we consider:

® M is represented with natural parameters w

min L(w)+ A B(w)
w2 Rd

Measure of model complexity:

® [(w) is the convex and 2nd_grder differentiable log—loss

® ()(w) is the L1-norm, which is convex but singular at origin!
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P2: Structure Learning (SL) of MRFs

e How is the graph structure constructed?

* Approximate Approaches:

® [.ocal heuristic search guided by a scoring function towards
. . . . . . . . %
improving an objective function, e.g., marginal likelihood
[Parise & Welling, 2006]

Need parameter estimation at each step

® SL as solving an L1-regularized MCLE problem [Lee et al.,
2006; Wainwright et al., 2006]

Joint parameter estimation and structure learning

° SIGKDD 2010, Washington DC, USA 2010-8-17
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SL via L1-norm Regularized Opt.

® Each possible edge e is associated with a set of feature functions ff¢(X;Yed

0 0000
00000
0 0 0 0
00000
00000

* Perform feature selection by solving L1 —regularized MCLE
® If the weights of ff(X;Ya@e zero, the edge e doesn’t exist

min L(w) + , kwk
w 2 Rd

® (Consider all features together will result in a complete graph!
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Solving the L1-regularized Opt. in MRFs

An Ideal Algorithm for MRFs

min L(w), L(w)+  kwk
w 2 Rd

Perform inference on a very sparse graph

1.
2. Very few gradient calculation to converge

® Batch Methods (all features considered together):

® Many examples:
Quasi-Newton gradient descent methods (OWL-QN) [Andrew & Gao, 2007]
Gradient descent + L1-ball projection [Duchi et al., 2008]
Stochastic gradient descent [Vishvanathan et al., 2006; Tsuruoka et al., 2009]
Gauss-Seidel co-ordinate descent [Shevade & Keerthi, 2003]

* Can scale up to millions of features, e.g., OWL-QN
® Not applicable for structure learning

Inference on cornplete graphs can be extrernely slow and inaccurate!

® Incremental Methods:
® Start from simple (sparse) model, iteratively add new features

* Example: Grafting [Perkins et al., 2003] Grafting—Light

° SIGKDD 2010, Washington DC, USA Fast, Incremental Algorithm
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Grafting-Light

min L(w), L(w)+ , kwk

d
w?2R 0
oL (W) is differentiable at one orthant
[ ) TWO-SteP itera tiVe procedure ® Choose an orthant into which @L (w t ) leads
e O t thant-wi dient 8k e, = sgn(w); Wi 8 0
ne-s ep ortnant-wise gra 1en » Sk Sgn(i @L(W)), Wk = O
descent over Working set § - ® Choose a step-size with backtracking line search
t — | t.
@ W)+, S(W); W 80 d=1(Hwpse)
@Lw) @MW) +,; w=0@LWw)<j ® Update model weights
W - ] 5: _ 1 5
Gl W B @ W >, wti=1(w'+ ed'e)

G w=0j@.(w)j- ,
L) S 1o - ) Yk osan(tk) = sgn(vk)
8k 1 k(fiv) = 0: otherwise

e Select top M features from the
® M is the Select Unit

set G and add them to $ - ®  Choose from inactive features that violate the optimal
G=ffyx:fx 2 U; andJ@L(W)J> .9 conditions

8k @L(w)+ ,sgn(wg) = 0;  wy 60
’ j@L(w)j- ,; otherwise
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Grafting-Light

® Thrm: when L(w) is convex, bounded below, and continuously

differentiable, Grafting-Light converges to the global optimum.

* Connections to existing algorithms:

® A lazy version of the incremental Grafting (converge faster!)

UV

0| [t 1L

Grafting—Light Grafting

® An incremental version of the batch OWL-QN [Andrew & Gao,
2007] (suitable for learning structures of MRFs)

@ SIGKDD 2010, Washington DC, USA 2010-8-17
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Experimental Results
e Tasks:

° Synthetic data on sequence labeling
e NP Chunking on CoNLL-2000 data
® Structure learning of MRFs on OCR characters

* Algorithms to compare:
® Incremental Grafting [Perkins et al., 2003]
® Batch quasi-Newton method [Andrew & Gao, 2007] (Full-L1-Opt.)
® Batch co-ordinate Gauss-Seidel [Shevade & Keerthi, 2003]

o Implementation
e Standard PC with Intel 2.00 GHz processor
® C++ programming language

SIGKDD 2010, Washington DC, USA 2010-8-17
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Synthetic Sequence Labeling

e # Features: 2000 state features + 4 pairwise dependency features 7 N7
* Linear-Chain CRFs: Gradients and Objective can be exactly Computed
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®  Grafting-L performs as good as optimal Full-Opt-L1 (exact gradient and all info used! Expected to be fasted!)

®  Grafting-L is much more efficient than greedy Grafting and co-ordinate Gauss-Seidel (fewer number of gradient
computation).

® During training, Grafting-L may include redundant features, but these can be effectively removed when converge!

®  Greedy Grafting and Gauss-Seidel can under-fit the data, i.e., selecting fewer number of features.
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NP-Chunking on CoNLL-2000

*  # Features: > 3M (e.g., unigram, bigram word pairs and POS tag pairs, etc.) [Sha & Pereria, 2003]

* Linear-Chain CRFs: Gradients and Objective function can be exactly computed by using message-passing
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99.9% features can be
: discarded!

®  During training, Grafting-L may include redundant features, but these can be effectively removed when converge!

PEOEES ST OO

PEDOOLOODOD

Ent Calculation

Hnder-fitting:

Grafting degenerates performance!

act gradient computation!)

g and co-ordinate Gauss-Seidel (fewer number of gradient

®  Greedy Grafting can under-fit the data, i.e., selecting fewer number of features and degenerate the performance

@ SIGKDD 2010, Washington DC, USA

2010-8-17

/




/ School of Computer Science
. Carnegie Mellon

Structure Learning of MRFs

® Performance of different methods on different OCR characters, e.g., S, I, G:
® 20 x 20 images; Total features: >80,000
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®  Grafting-Light is consistently more efficient than Grafting and Full-Opt.-L1

®  Greedy Grafting needs much more number of gradient computation

®  Gradient computation in Full-Opt.-L1 is expensive due to the difficult inference on complete graph
® Incremental methods consistently more efficient and accurate than batch methods

° Full—Opt.—Ll do expensive inference on complete graphs and gradients can be very inaccurate!
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Structure Learning of MRFs

* Performance change against Select-Unit (# features selected at each iteration)

-Light is consistently more efficient than Grafting
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The batch Full—Opt.—Ll doesn’t achieve sparse

structures because of inaccurate gradientsl
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Structure Learning of MRFs

® Average image produced from the learned model by different

algorithms
“ACMSIG”

® The batch Full-Opt.-L1 produces blurry images because of inaccurate
gradient computation on complete graphs (Non-sparse results!)
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Conclusions & Future Work

® Conclusions:
® We present Grafting-Light: a fast, incremental algorithm for solving the L1-
regularized MLE for FS and SL of MRFs
® We show that:
Incremental methods are better than batch methods for feature selection and structure

learning of MRFs

Message-passing on complete graphs can lead to inaccurate gradients or marginals,
which are not good for feature selection or structure learning

Grafting—Light is more efficient than the greedy Grafting algorithm

® Future Work:
* Convergence rate and time complexity analysis
* Apply to solve non-convex problems, e.g., learning structures of MRFs with
latent variables
® Regularization path analysis and comparison with more existing methods,
e.g., stochastic gradient descent, etc.
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Thank you!
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