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Supervised machine learning with convex optimization

Linear vs. non-linear

Small scale vs. large scale

• 1990’s - early 2000’s

– Non-linear kernel methods

– Non-parametric statistics: convergence rates in O(n−α)

– Small-scale problems: complexity in O(n2) (or more)
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• From naive optimization to naive statistical models
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Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction ŷ = f(x) = 〈f,Φ(x)〉, f ∈ F = Hilbert space

• Regularized empirical risk minimization: find f̂ solution of

min
f∈F

1

n

n
∑

i=1

ℓ
(

yi, f(xi)
)

+
λ

2
‖f‖2

convex data fitting term + regularizer
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• Prediction ŷ = f(x) = 〈f,Φ(x)〉, f ∈ F = Hilbert space

• Regularized empirical risk minimization: find f̂ solution of

min
f∈F

1

n

n
∑

i=1

ℓ
(

yi, f(xi)
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+
λ

2
‖f‖2

convex data fitting term + regularizer

• Empirical risk: R̂(θ) = 1
n

∑n
i=1 ℓ(yi, f(xi)) training cost

• Expected risk: R(θ) = E(x,y)ℓ(y, f(x)) testing cost

• Two fundamental questions: (1) computing f̂ and (2) analyzing f̂



Supervised machine learning

Worst-case analysis

• Results from Sridharan et al. (2008). See also Boucheron and Massart

(2011)

• Assumptions (R = expected risk, R̂ = empirical risk)

– f̂ = argminf∈F R̂(f) + λ
2‖f‖2

– ‖Φ(x)‖ 6 B almost surely

– L-Lipschitz loss, i.e., R and R̂ are LB-Lipschitz continuous

• With probability greater than 1− δ,

R(f̂) +
λ

2
‖f̂‖2 −min

f∈F

{

R(f) +
λ

2
‖f‖2

}

6
16L2B2(32 + log 1

δ)

λn

λ should tend to zero with n!
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Supervised machine learning

Worst-case analysis

• General result with squared norm regularization

R(f̂) +
λ

2
‖f̂‖2 −min

f∈F

{

R(f) +
λ

2
‖f‖2

}

6 O
( 1

λn

)

• Worst-case: λ = O(n−1/2)

R(f̂)−min
f∈F

R(f) 6 O
( 1√

n

)

For finite dimensional feature spaces F = R
p

Rates achievable with algorithms of complexity O(pn)

Stochastic gradient and variants
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Supervised machine learning

Worst-case analysis

• General result with squared norm regularization

R(f̂) +
λ

2
‖f̂‖2 −min

f∈F

{

R(f) +
λ

2
‖f‖2

}

6 O
( 1

λn

)

• Worst-case: λ = O(n−1/2)

R(f̂)−min
f∈F

R(f) 6 O
( 1√

n

)

• Taking into account the correlation structure of features

– All eigenvalues of the kernel matrix and the covariance matrix

– Between O(n−1) and O(n−1/2)
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• Infinite-dimensional linear models

– Few efficient optimization algorithms for a fixed λ

– Choice of λ remains unclear

– Implicitly adapt the capacity of predictors as n grows

(non-parametric statistics)

– Higher risk of overfitting

• In many situations, high-dimensional models and infinite-dimensional

models exhibit same issues
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Is it possible to avoid quadratic complexity with non-parametric
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Supervised learning with kernels

• Regularized empirical risk minimization: find f̂ solution of

min
f∈F

1

n

n
∑

i=1

ℓ
(

yi, 〈f,Φ(xi)〉
)

+
λ

2
‖f‖2

• Representer theorem (Kimeldorf and Wahba, 1971): f may be

expressed as
∑n

i=1αiΦ(xi) ⇒ f(x) =
∑n

i=1αik(x, xi)

– Positive definite kernel k(x, x′) = 〈Φ(x),Φ(x′)〉

• Equivalent optimization problem

– K = kernel matrix ∈ R
n×n, Kij = 〈Φ(xi),Φ(xi)〉 = k(xi, xj)

min
α∈Rn

1

n

n
∑

i=1

ℓ
(

yi, (Kα)i
)

+
λ

2
α⊤Kα



Efficient algorithms for kernel machines

Subquadratic running-time complexity - II

• Forbidden to compute the kernel matrix

• Stochastic gradient with cost O(t) at iteration t leads to O(n2)

– Hilbert space iteration: ft = (1−λγt)ft−1−γtℓ
′(yt, ft−1(xt))Φ(xt)

– ft represented as
∑t

i=1α
i
tΦ(xi)

– αt
t = −γtℓ

′
(

yt,
∑t−1

i=1 α
i
t−1k(xi, xt)

)

and α1:t−1
t = (1− λγt)α

1:t−1
t−1

Restricted budget of support vectors

Forgetron (Dekel et al., 2005), Projectron (Orabona et al., 2008),

BGSD (Wang et al., 2012)

Worst-case guarantees

Online selection of examples: LASVM (Bordes et al., 2005)
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Efficient algorithms for kernel machines

Subquadratic running-time complexity - II

• Random features (Rahimi and Recht, 2007)

– For kernels of the form k(x, x′) = Eω

[

Φω(x)
⊤Φω(x

′)
]

– Use explicit features (Φωi
(x))i for samples ωi, i = 1, . . . , p

– Worst-case guarantees

Column-sampling

Low-rank approximation of kernel matrix from a subset of its

columns/rows

Nyström method (Williams and Seeger, 2001), sparse greedy

approximations (Smola and Schölkopf, 2000), incomplete Cholesky

decomposition (Fine and Scheinberg, 2001), Gram-Schmidt

orthonormalization (Shawe-Taylor and Cristianini, 2004), CUR

matrix decompositions (Mahoney and Drineas, 2009)
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Column sampling for kernel matrix approximation

• Given a positive semi-definite matrix K ∈ R
n×n, and V = {1, . . . , n}

– Approximation for submatrix K(V, I), where I ⊂ V

– Least-square optimal decomposition:

L = K(V, I)K(I, I)−1K(I, V ) = k(xV , xI)k(xI, xI)
−1k(xI, xV )

K(I,I) K(I,J)

K(J,I) K(J,J)

• K(J, J) approximated by K(J, I)K(I, I)−1K(I, J)



Column sampling for kernel matrix approximation

• Given a positive semi-definite matrix K ∈ R
n×n, and V = {1, . . . , n}

– Approximation for submatrix K(V, I), where I ⊂ V

– Least-square optimal decomposition:

L = K(V, I)K(I, I)−1K(I, V ) = k(xV , xI)k(xI, xI)
−1k(xI, xV )

– Property: K < L

• Corresponds to feature map Φ̃(x) = k(xI, xI)
−1/2k(xI, x) ∈ R

I

• Computation in O(|I|2n) with incomplete Cholesky decomposition

• Main questions

– Choice of I: pivoting or random sampling

– Cardinality of I



Column sampling for kernel matrix approximation

Previous work

• Bound on ‖K − L‖
– Mahoney and Drineas (2009); S. Kumar (2012)

– Tools from matrix concentration inequalities

• Bound on prediction performance

– Non sharp two-step approaches

– Worst-case performance (Jin et al., 2011)

– Not taking into account potentially small λ (Cortes et al., 2010)
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Kernel ridge regression

• Optimization problem obtained from representer theorem:

min
α∈Rn

1

2n

n
∑

i=1

(

yi − (Kα)i
)2

+
λ

2
α⊤Kα

min
α∈Rn

1

2n
‖y −Kα‖2 +

λ

2
α⊤Kα

• Solution: α = (K + nλI)−1y

• Prediction on training data: Kα = K(K + nλI)−1y = Hy

– Smoothing matrix H



Fixed design analysis of kernel ridge regression

• x1, . . . , xn deterministic, yi = Eyi + εi = zi + εi, i = 1, . . . , n

– C covariance matrix of ε, prediction ẑ = K(K + nλI)−1y = Hy

• Bias/variance decomposition of the in-sample prediction error

(Wahba, 1990; Hastie and Tibshirani, 1990; Caponnetto and De Vito,

2007)
1
nEε‖ẑ − z‖2 = 1

n‖Eεẑ − z‖2 + 1
n tr varε(ẑ)

= 1
n‖(H − I)z‖2 + 1

n trCH2
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• x1, . . . , xn deterministic, yi = Eyi + εi = zi + εi, i = 1, . . . , n

– C covariance matrix of ε, prediction ẑ = K(K + nλI)−1y = Hy

• Bias/variance decomposition of the in-sample prediction error

(Wahba, 1990; Hastie and Tibshirani, 1990; Caponnetto and De Vito,

2007)
1
nEε‖ẑ − z‖2 = 1

n‖Eεẑ − z‖2 + 1
n tr varε(ẑ)

= 1
n‖(H − I)z‖2 + 1

n trCH2

which may be classically decomposed in two terms:

bias(K) =
1

n
‖(H − I)z‖2 = nλ2z⊤(K + nλI)−2z

variance(K) =
1

n
trCH2 =

1

n
trCK2(K + nλI)−2



Degrees of freedom

bias(K) = 1
n‖(H − I)z‖2 = nλ2z⊤(K + nλI)−2z

variance(K) = 1
n trCH2 = 1

n trCK2(K + nλI)−2

• When C = σ2I, variance(K) = σ2

n trH
2 = σ2

n trK2(K + nλI)−2

• Degrees of freedom: trK2(K + nλI)−2 or trK(K + nλI)−1

– Implicit number of param. of smoothing mat. H = K(K+nλI)−1

– Equal to p, if rank(K) = p and λ = 0

Definition: maximal marginal degrees of freedom

d = n
∥

∥diag
(

K(K + nλI)−1
)∥

∥

∞

trK2(K+nλI)−26trK(K+nλI)−1=
∥

∥diag
(

K(K+nλI)−1
)∥

∥

1
6d
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∥

∥
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= n

∥
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∥

∞

Note: trH2 6 trH =
∥

∥ diag(H))
∥

∥

1
6 n

∥

∥diag(H))
∥

∥

∞
= d



Degrees of freedom

vs. rank of column sampling approximation

• Column-sampling leads to explicit p-dimensional features

• Degrees of freedom correspond to an implicit number d of parameters

• What is the link between p and d?

– same (or better) performance than full rank problem



Degrees of freedom

vs. rank of column sampling approximation

• Column-sampling leads to explicit p-dimensional features

• Degrees of freedom correspond to an implicit number d of parameters

• What is the link between p and d?

– same (or better) performance than full rank problem

• We “must” have p > d, if

(a) column sampling approximation obtained from held out data

(b) generalization error optimal

• Does p = O(d) suffice?



Generalization performance of column sampling

(Bach, 2012)

• Assumptions

– z ∈ R
n, K ∈ R

n×n positive semidefinite, λ > 0,

– d = n
∥

∥diag
(

K(K + nλI)−1
)∥

∥

∞
and R2 = ‖diag(K)‖∞

– ε ∈ R
n random vector with finite variance and zero mean

– I uniform random subset of p indices in {1, . . . , n}
– Column sampling approximation L = K(V, I)K(I, I)−1K(I, V )

– Estimate ẑK = (K+nλI)−1K(z+ε) and ẑL = (L+nλI)−1L(z+ε)
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(Bach, 2012)

• Assumptions

– z ∈ R
n, K ∈ R

n×n positive semidefinite, λ > 0,

– d = n
∥
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)∥
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– Estimate ẑK = (K+nλI)−1K(z+ε) and ẑL = (L+nλI)−1L(z+ε)

• For any δ ∈ (0, 1), if p >
(32d

δ
+ 2

)

log
nR2

δλ
, then

1

n
EIEε‖ẑL − z‖2 6 1

n
(1 + 4δ)Eε‖ẑK − z‖2.



Generalization performance of column sampling

• For any δ ∈ (0, 1), if p >
(32d

δ
+ 2

)

log
nR2

δλ
, then

1

n
EIEε‖ẑL − z‖2 6 1

n
(1 + 4δ)Eε‖ẑK − z‖2.

• Discussion

– Proof technique: approximation of subsampled covariance

matrices (Tropp, 2011; Gittens, 2011)

– No assumptions on eigengap or on the noise

– Relative approximation guarantee

– Expectations, both with respect to the data (i.e., Eε) and the

sampling of columns (i.e., EI)

– Different from good approximation of K

– Sufficient lower-bound for required rank p

– Logarithmic term in λ



Beyond least-square regression

Self-concordant analysis of logistic regression

• Logistic loss ℓ(u) = log(1 + e−u)

– No closed-form expressions

• Self-concordance (Nesterov and Nemirovski, 1994)

– g : R → R is self-concordant iff ∀u ∈ R, |g′′′(u)| 6 2g′′(u)3/2

• Extension for logistic loss (Bach, 2010): ∀u ∈ R, |g′′′(u)| 6 g′′(u)

• Allows non-asymptotic analysis of logistic regression

– With exact first-order term

– Replace covariance by Fisher information matrix



Optimal choice of the regularization parameter λ

• Eigenvalues of K = Θ(nµi), i = 1, . . . , n, with
∑

i µi = Θ(1)

so that trK = Θ(n)

• Coordinates of z on eigenbasis of K = Θ(
√
nνi) with

∑

i νi = Θ(1)

so that 1
nz

⊤z = Θ(1)

(µi) (νi) variance bias optimal λ pred. perf. d condition

i−2β i−2δ n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1) 2δ > 4β+1

i−2β i−2δ n−1λ−1/2β λ(2δ−1)/2β n−β/δ n1/(2δ)−1 n1/(2δ) 2δ < 4β+1

i−2β e−κi n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1)

e−ρi i−2δ n−1 log 1
λ (log 1

λ)
1−2δ exp(−n1/(2δ)) n1/(2δ)−1 n1/(2δ)

e−ρi e−κi n−1 log 1
λ λ2 n−1/2 log n/n logn κ > 2ρ

e−ρi e−κi n−1 log 1
λ λκ/ρ n−ρ/κ log n/n logn κ < 2ρ

• Always assume δ > 1/2, β > 1/2, ρ > 0, κ > 0



Optimal choice of the regularization parameter λ
(µi) (νi) variance bias optimal λ pred. perf. d condition

i−2β i−2δ n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1) 2δ > 4β+1

i−2β i−2δ n−1λ−1/2β λ(2δ−1)/2β n−β/δ n1/(2δ)−1 n1/(2δ) 2δ < 4β+1

i−2β e−κi n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1)

e−ρi i−2δ n−1 log 1
λ (log 1

λ)
1−2δ exp(−n1/(2δ)) n1/(2δ)−1 n1/(2δ)

e−ρi e−κi n−1 log 1
λ λ2 n−1/2 logn/n logn κ > 2ρ

e−ρi e−κi n−1 log 1
λ λκ/ρ n−ρ/κ logn/n logn κ < 2ρ

• Best possible performance (Johnstone, 1994; Steinwart et al., 2009)

– if νi = O(i−2δ): O(n1/2δ−1)

– if νi = O(e−κi): O(log n/n)

• Faster decay of components (νi) of K ≈ smoother functions

• Faster decay of eigenvalues (µi) of K ≈ smaller feature space

– Overfitting if feature space too large

– Numerical problems if feature space too small



Optimization algorithms with column sampling

Twice-differentiable losses

• Given rank p and regularization parameter λ

1. Select at random p columns of K (without replacement)

2. Compute Φ ∈ R
n×p such that ΦΦ⊤ = K(V, I)K(I, I)−1K(I, V )

using incomplete Cholesky decomposition

3. Minimize minw∈Rp
1
n

∑n
i=1 ℓ(yi, (Φw)i) +

λ
2‖w‖2 using Newton’s

method (i.e., a single linear system for the square loss).

• Complexity O(p2n) ≈ O(d2n)

• Robustness to ill-conditioning and in particular to small values of λ

• Choice of p in practice?



Simulations on synthetic examples

• Periodic smoothing splines on [0, 1] and points x1, . . . , xn uniformly

spread over [0, 1]

• k(x, y) =
∑∞

i=1 2µi cos 2iπ(x− y), and f(x) =
∑∞

i=1 2ν
1/2
i cos 2iπx

• νi = i−2δ, µi = i−2β, δ = 8, β = 1, 4, 8
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– Left: regularization parameter λ, right: predictive performance

– Right: sufficient rank to obtain 1% worse predictive performance



Simulations on pumadyn datasets

• Sufficient rank to obtain 1% worse predictive performance, over the

degrees of freedom
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• From left to right: pumadyn datasets 32fh, 32nh, 32nm



Conclusions

• Analysis of column sampling for kernel least-squares regression

– Degrees of freedom: both statistical and computational roles

• Extensions

– Beyond uniform sampling (Boutsidis et al., 2009; S. Kumar, 2012)

– Random design using results from Hsu et al. (2011)

– Achieve O(dn) running-time complexity

– Beyond least-squares regression, e.g., logistic regression (Bach,

2010), SVM (Blanchard et al., 2008)

– Online setting with properly decaying regularization parameter

– Relationship with averaged stochastic gradient (Polyak and

Juditsky, 1992)
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