Sharp analysis of low-rank kernel matrix approximations

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

NIPS Optimization workshop - December 2012

Don't forget kernels methods!

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

NIPS Optimization workshop - December 2012

Don't forget kernels methods! Don't forget asymptotic analysis!

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

NIPS Optimization workshop - December 2012

Supervised machine learning with convex optimization Linear vs. non-linear
 Small scale vs. large scale

- 1990's - early 2000's
- Non-linear kernel methods
- Non-parametric statistics: convergence rates in $O\left(n^{-\alpha}\right)$
- Small-scale problems: complexity in $O\left(n^{2}\right)$ (or more)

Supervised machine learning with convex optimization Linear vs. non-linear Small scale vs. large scale

- 1990's - early 2000's
- Non-linear kernel methods
- Non-parametric statistics: convergence rates in $O\left(n^{-\alpha}\right)$
- Small-scale problems: complexity in $O\left(n^{2}\right)$ (or more)
- late 2000's - early 2010's
- Linear methods with/without sparsity-inducing regularization
- Parametric statistics: convergence rates in $O\left(n^{-1}\right)$ or $O\left(n^{-1 / 2}\right)$
- Large-scale problems: complexity in $O(n)$

Supervised machine learning with convex optimization Linear vs. non-linear
 Small scale vs. large scale

- 1990's - early 2000's
- Non-linear kernel methods
- Non-parametric statistics: convergence rates in $O\left(n^{-\alpha}\right)$
- Small-scale problems: complexity in $O\left(n^{2}\right)$ (or more)
- late 2000's - early 2010's
- Linear methods with/without sparsity-inducing regularization
- Parametric statistics: convergence rates in $O\left(n^{-1}\right)$ or $O\left(n^{-1 / 2}\right)$
- Large-scale problems: complexity in $O(n)$
- From naive optimization to naive statistical models

Outline

- Introduction
- Supervised machine learning and convex optimization
- Critical review of worst-case analysis
- Efficient optimization with kernels
- Classical analysis of kernel ridge regression
- Bias / variance
- Degrees of freedom
- Sharp analysis of low-rank approximation for kernel methods
- Column sampling
- No loss in predictive performance
- Choice of regularization parameter

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction $\hat{y}=f(x)=\langle f, \Phi(x)\rangle, f \in \mathcal{F}=$ Hilbert space
- Regularized empirical risk minimization: find \hat{f} solution of

$$
\begin{aligned}
& \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2} \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$, i.i.d.
- Prediction $\hat{y}=f(x)=\langle f, \Phi(x)\rangle, f \in \mathcal{F}=$ Hilbert space
- Regularized empirical risk minimization: find \hat{f} solution of

$$
\begin{aligned}
& \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)+\frac{\lambda}{2}\|f\|^{2} \\
& \text { convex data fitting term }+ \text { regularizer }
\end{aligned}
$$

- Empirical risk: $\hat{R}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) \quad$ training cost
- Expected risk: $R(\theta)=\mathbb{E}_{(x, y)} \ell(y, f(x)) \quad$ testing cost
- Two fundamental questions: (1) computing \hat{f} and (2) analyzing \hat{f}

Supervised machine learning Worst-case analysis

- Results from Sridharan et al. (2008). See also Boucheron and Massart (2011)
- Assumptions ($R=$ expected risk, $\hat{R}=$ empirical risk)
$-\hat{f}=\arg \min _{f \in \mathcal{F}} \hat{R}(f)+\frac{\lambda}{2}\|f\|^{2}$
- $\|\Phi(x)\| \leqslant B$ almost surely
- L-Lipschitz loss, i.e., R and \hat{R} are $L B$-Lipschitz continuous
- With probability greater than $1-\delta$,

$$
R(\hat{f})+\frac{\lambda}{2}\|\hat{f}\|^{2}-\min _{f \in \mathcal{F}}\left\{R(f)+\frac{\lambda}{2}\|f\|^{2}\right\} \leqslant \frac{16 L^{2} B^{2}\left(32+\log \frac{1}{\delta}\right)}{\lambda n}
$$

Supervised machine learning Worst-case analysis

- Results from Sridharan et al. (2008). See also Boucheron and Massart (2011)
- Assumptions ($R=$ expected risk, $\hat{R}=$ empirical risk)
$-\hat{f}=\arg \min _{f \in \mathcal{F}} \hat{R}(f)+\frac{\lambda}{2}\|f\|^{2}$
- $\|\Phi(x)\| \leqslant B$ almost surely
- L-Lipschitz loss, i.e., R and \hat{R} are $L B$-Lipschitz continuous
- With probability greater than $1-\delta$,

$$
R(\hat{f})+\frac{\lambda}{2}\|\hat{f}\|^{2}-\min _{f \in \mathcal{F}}\left\{R(f)+\frac{\lambda}{2}\|f\|^{2}\right\} \leqslant \frac{16 L^{2} B^{2}\left(32+\log \frac{1}{\delta}\right)}{\lambda n}
$$

- λ should tend to zero with n !

Supervised machine learning Worst-case analysis

- General result with squared norm regularization

$$
R(\hat{f})+\frac{\lambda}{2}\|\hat{f}\|^{2}-\min _{f \in \mathcal{F}}\left\{R(f)+\frac{\lambda}{2}\|f\|^{2}\right\} \leqslant O\left(\frac{1}{\lambda n}\right)
$$

- Worst-case: $\lambda=O\left(n^{-1 / 2}\right)$

$$
R(\hat{f})-\min _{f \in \mathcal{F}} R(f) \leqslant O\left(\frac{1}{\sqrt{n}}\right)
$$

Supervised machine learning Worst-case analysis

- General result with squared norm regularization

$$
R(\hat{f})+\frac{\lambda}{2}\|\hat{f}\|^{2}-\min _{f \in \mathcal{F}}\left\{R(f)+\frac{\lambda}{2}\|f\|^{2}\right\} \leqslant O\left(\frac{1}{\lambda n}\right)
$$

- Worst-case: $\lambda=O\left(n^{-1 / 2}\right)$

$$
R(\hat{f})-\min _{f \in \mathcal{F}} R(f) \leqslant O\left(\frac{1}{\sqrt{n}}\right)
$$

- For finite dimensional feature spaces $\mathcal{F}=\mathbb{R}^{p}$
- Rates achievable with algorithms of complexity $\mathbf{O}(\mathrm{pn})$
- Stochastic gradient and variants

Supervised machine learning Worst-case analysis

- General result with squared norm regularization

$$
R(\hat{f})+\frac{\lambda}{2}\|\hat{f}\|^{2}-\min _{f \in \mathcal{F}}\left\{R(f)+\frac{\lambda}{2}\|f\|^{2}\right\} \leqslant O\left(\frac{1}{\lambda n}\right)
$$

- Worst-case: $\lambda=O\left(n^{-1 / 2}\right)$

$$
R(\hat{f})-\min _{f \in \mathcal{F}} R(f) \leqslant O\left(\frac{1}{\sqrt{n}}\right)
$$

- Taking into account the correlation structure of features
- All eigenvalues of the kernel matrix and the covariance matrix
- Between $O\left(n^{-1}\right)$ and $O\left(n^{-1 / 2}\right)$

Why kernels?

- Finite-dimensional linear models
- Efficient optimization algorithms for a fixed λ
- Choice of λ remains unclear
- Potential underfitting (parametric statistics)

Why kernels?

- Finite-dimensional linear models
- Efficient optimization algorithms for a fixed λ
- Choice of λ remains unclear
- Potential underfitting (parametric statistics)
- Infinite-dimensional linear models
- Few efficient optimization algorithms for a fixed λ
- Choice of λ remains unclear
- Implicitly adapt the capacity of predictors as n grows (non-parametric statistics)
- Higher risk of overfitting
- In many situations, high-dimensional models and infinite-dimensional models exhibit same issues

Why kernels?

- Provides good abstraction of high-dimensional models
- Non-linear estimation
- Computer vision, bioinformatics, neuro-imaging
- Implicitly augment the number of features as n grows
- Computational complexity
- Naive optimization above $O\left(n^{2}\right)$

Why kernels?

- Provides good abstraction of high-dimensional models
- Non-linear estimation
- Computer vision, bioinformatics, neuro-imaging
- Implicitly augment the number of features as n grows
- Computational complexity
- Naive optimization above $O\left(n^{2}\right)$
- Lower and upper bounds on complexity
- Is it possible to avoid quadratic complexity with non-parametric kernel methods?
- Both theoretical and practical issues

Supervised learning with kernels

- Regularized empirical risk minimization: find \hat{f} solution of

$$
\min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},\left\langle f, \Phi\left(x_{i}\right)\right\rangle\right)+\frac{\lambda}{2}\|f\|^{2}
$$

- Representer theorem (Kimeldorf and Wahba, 1971): f may be expressed as $\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right) \Rightarrow f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)$
- Positive definite kernel $k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$
- Equivalent optimization problem
$-K=$ kernel matrix $\in \mathbb{R}^{n \times n}, K_{i j}=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{i}\right)\right\rangle=k\left(x_{i}, x_{j}\right)$

$$
\min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},(K \alpha)_{i}\right)+\frac{\lambda}{2} \alpha^{\top} K \alpha
$$

Efficient algorithms for kernel machines Subquadratic running-time complexity - I

- Forbidden to compute the kernel matrix
- Stochastic gradient with cost $O(t)$ at iteration t leads to $O\left(n^{2}\right)$
- Hilbert space iteration: $f_{t}=\left(1-\lambda \gamma_{t}\right) f_{t-1}-\gamma_{t} \ell^{\prime}\left(y_{t}, f_{t-1}\left(x_{t}\right)\right) \Phi\left(x_{t}\right)$
- f_{t} represented as $\sum_{i=1}^{t} \alpha_{t}^{i} \Phi\left(x_{i}\right)$
$-\alpha_{t}^{t}=-\gamma_{t} \ell^{\prime}\left(y_{t}, \sum_{i=1}^{t-1} \alpha_{t-1}^{i} k\left(x_{i}, x_{t}\right)\right)$ and $\alpha_{t}^{1: t-1}=\left(1-\lambda \gamma_{t}\right) \alpha_{t-1}^{1: t-1}$

Efficient algorithms for kernel machines Subquadratic running-time complexity - I

- Forbidden to compute the kernel matrix
- Stochastic gradient with cost $O(t)$ at iteration t leads to $O\left(n^{2}\right)$
- Hilbert space iteration: $f_{t}=\left(1-\lambda \gamma_{t}\right) f_{t-1}-\gamma_{t} \ell^{\prime}\left(y_{t}, f_{t-1}\left(x_{t}\right)\right) \Phi\left(x_{t}\right)$
- f_{t} represented as $\sum_{i=1}^{t} \alpha_{t}^{i} \Phi\left(x_{i}\right)$
$-\alpha_{t}^{t}=-\gamma_{t} \ell^{\prime}\left(y_{t}, \sum_{i=1}^{t-1} \alpha_{t-1}^{i} k\left(x_{i}, x_{t}\right)\right)$ and $\alpha_{t}^{1: t-1}=\left(1-\lambda \gamma_{t}\right) \alpha_{t-1}^{1: t-1}$
- Restricted budget of support vectors
- Forgetron (Dekel et al., 2005), Projectron (Orabona et al., 2008), BGSD (Wang et al., 2012)
- Worst-case guarantees
- Online selection of examples: LASVM (Bordes et al., 2005)

Efficient algorithms for kernel machines Subquadratic running-time complexity - II

- Random features (Rahimi and Recht, 2007)
- For kernels of the form $k\left(x, x^{\prime}\right)=\mathbb{E}_{\omega}\left[\Phi_{\omega}(x)^{\top} \Phi_{\omega}\left(x^{\prime}\right)\right]$
- Use explicit features $\left(\Phi_{\omega_{i}}(x)\right)_{i}$ for samples $\omega_{i}, i=1, \ldots, p$
- Worst-case guarantees

Efficient algorithms for kernel machines Subquadratic running-time complexity - II

- Random features (Rahimi and Recht, 2007)
- For kernels of the form $k\left(x, x^{\prime}\right)=\mathbb{E}_{\omega}\left[\Phi_{\omega}(x)^{\top} \Phi_{\omega}\left(x^{\prime}\right)\right]$
- Use explicit features $\left(\Phi_{\omega_{i}}(x)\right)_{i}$ for samples $\omega_{i}, i=1, \ldots, p$
- Worst-case guarantees
- Column-sampling
- Low-rank approximation of kernel matrix from a subset of its columns/rows
- Nyström method (Williams and Seeger, 2001), sparse greedy approximations (Smola and Schölkopf, 2000), incomplete Cholesky decomposition (Fine and Scheinberg, 2001), Gram-Schmidt orthonormalization (Shawe-Taylor and Cristianini, 2004), CUR matrix decompositions (Mahoney and Drineas, 2009)

Column sampling for kernel matrix approximation

- Given a positive semi-definite matrix $K \in \mathbb{R}^{n \times n}$, and $V=\{1, \ldots, n\}$
- Approximation for submatrix $K(V, I)$, where $I \subset V$
- Least-square optimal decomposition:

$$
L=K(V, I) K(I, I)^{-1} K(I, V)=k\left(x_{V}, x_{I}\right) k\left(x_{I}, x_{I}\right)^{-1} k\left(x_{I}, x_{V}\right)
$$

- $K(J, J)$ approximated by $K(J, I) K(I, I)^{-1} K(I, J)$

Column sampling for kernel matrix approximation

- Given a positive semi-definite matrix $K \in \mathbb{R}^{n \times n}$, and $V=\{1, \ldots, n\}$
- Approximation for submatrix $K(V, I)$, where $I \subset V$
- Least-square optimal decomposition:

$$
L=K(V, I) K(I, I)^{-1} K(I, V)=k\left(x_{V}, x_{I}\right) k\left(x_{I}, x_{I}\right)^{-1} k\left(x_{I}, x_{V}\right)
$$

- Property: $K \succcurlyeq L$
- Corresponds to feature map $\tilde{\Phi}(x)=k\left(x_{I}, x_{I}\right)^{-1 / 2} k\left(x_{I}, x\right) \in \mathbb{R}^{I}$
- Computation in $O\left(|I|^{2} n\right)$ with incomplete Cholesky decomposition
- Main questions
- Choice of I : pivoting or random sampling
- Cardinality of I

Column sampling for kernel matrix approximation Previous work

- Bound on $\|K-L\|$
- Mahoney and Drineas (2009); S. Kumar (2012)
- Tools from matrix concentration inequalities
- Bound on prediction performance
- Non sharp two-step approaches
- Worst-case performance (Jin et al., 2011)
- Not taking into account potentially small λ (Cortes et al., 2010)

Outline

- Introduction
- Supervised machine learning and convex optimization
- Critical review of worst-case analysis
- Efficient optimization with kernels
- Classical analysis of kernel ridge regression
- Bias / variance
- Degrees of freedom
- Sharp analysis of low-rank approximation for kernel methods
- Column sampling
- No loss in predictive performance
- Choice of regularization parameter

Kernel ridge regression

- Optimization problem obtained from representer theorem:

$$
\begin{array}{r}
\min _{\alpha \in \mathbb{R}^{n}} \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-(K \alpha)_{i}\right)^{2}+\frac{\lambda}{2} \alpha^{\top} K \alpha \\
\min _{\alpha \in \mathbb{R}^{n}} \frac{1}{2 n}\|y-K \alpha\|^{2}+\frac{\lambda}{2} \alpha^{\top} K \alpha
\end{array}
$$

- Solution: $\alpha=(K+n \lambda I)^{-1} y$
- Prediction on training data: $K \alpha=K(K+n \lambda I)^{-1} y=H y$
- Smoothing matrix H

Fixed design analysis of kernel ridge regression

- x_{1}, \ldots, x_{n} deterministic, $y_{i}=\mathbb{E} y_{i}+\varepsilon_{i}=z_{i}+\varepsilon_{i}, i=1, \ldots, n$
- C covariance matrix of ε, prediction $\hat{z}=K(K+n \lambda I)^{-1} y=H y$
- Bias/variance decomposition of the in-sample prediction error (Wahba, 1990; Hastie and Tibshirani, 1990; Caponnetto and De Vito, 2007)

$$
\begin{aligned}
\frac{1}{n} \mathbb{E}_{\varepsilon}\|\hat{z}-z\|^{2} & =\frac{1}{n}\left\|\mathbb{E}_{\varepsilon} \hat{z}-z\right\|^{2}+\frac{1}{n} \operatorname{tr} \operatorname{var}_{\varepsilon}(\hat{z}) \\
& =\frac{1}{n}\|(H-I) z\|^{2}+\frac{1}{n} \operatorname{tr} C H^{2}
\end{aligned}
$$

Fixed design analysis of kernel ridge regression

- x_{1}, \ldots, x_{n} deterministic, $y_{i}=\mathbb{E} y_{i}+\varepsilon_{i}=z_{i}+\varepsilon_{i}, i=1, \ldots, n$
- C covariance matrix of ε, prediction $\hat{z}=K(K+n \lambda I)^{-1} y=H y$
- Bias/variance decomposition of the in-sample prediction error (Wahba, 1990; Hastie and Tibshirani, 1990; Caponnetto and De Vito, 2007)

$$
\begin{aligned}
\frac{1}{n} \mathbb{E}_{\varepsilon}\|\hat{z}-z\|^{2} & =\frac{1}{n}\left\|\mathbb{E}_{\varepsilon} \hat{z}-z\right\|^{2}+\frac{1}{n} \operatorname{tr} \operatorname{var}_{\varepsilon}(\hat{z}) \\
& =\frac{1}{n}\|(H-I) z\|^{2}+\frac{1}{n} \operatorname{tr} C H^{2}
\end{aligned}
$$

which may be classically decomposed in two terms:

$$
\begin{aligned}
\operatorname{bias}(K) & =\frac{1}{n}\|(H-I) z\|^{2}=n \lambda^{2} z^{\top}(K+n \lambda I)^{-2} z \\
\operatorname{variance}(K) & =\frac{1}{n} \operatorname{tr} C H^{2}=\frac{1}{n} \operatorname{tr} C K^{2}(K+n \lambda I)^{-2}
\end{aligned}
$$

Degrees of freedom

$$
\begin{aligned}
\operatorname{bias}(K) & =\frac{1}{n}\|(H-I) z\|^{2}=n \lambda^{2} z^{\top}(K+n \lambda I)^{-2} z \\
\operatorname{variance}(K) & =\frac{1}{n} \operatorname{tr} C H^{2}=\frac{1}{n} \operatorname{tr} C K^{2}(K+n \lambda I)^{-2}
\end{aligned}
$$

- When $C=\sigma^{2} I$, variance $(K)=\frac{\sigma^{2}}{n} \operatorname{tr} H^{2}=\frac{\sigma^{2}}{n} \operatorname{tr} K^{2}(K+n \lambda I)^{-2}$
- Degrees of freedom: $\operatorname{tr} K^{2}(K+n \lambda I)^{-2}$ or $\operatorname{tr} K(K+n \lambda I)^{-1}$
- Implicit number of param. of smoothing mat. $H=K(K+n \lambda I)^{-1}$
- Equal to p, if $\operatorname{rank}(K)=p$ and $\lambda=0$

Degrees of freedom

$$
\begin{aligned}
\operatorname{bias}(K) & =\frac{1}{n}\|(H-I) z\|^{2}=n \lambda^{2} z^{\top}(K+n \lambda I)^{-2} z \\
\operatorname{variance}(K) & =\frac{1}{n} \operatorname{tr} C H^{2}=\frac{1}{n} \operatorname{tr} C K^{2}(K+n \lambda I)^{-2}
\end{aligned}
$$

- When $C=\sigma^{2} I$, variance $(K)=\frac{\sigma^{2}}{n} \operatorname{tr} H^{2}=\frac{\sigma^{2}}{n} \operatorname{tr} K^{2}(K+n \lambda I)^{-2}$
- Degrees of freedom: $\operatorname{tr} K^{2}(K+n \lambda I)^{-2}$ or $\operatorname{tr} K(K+n \lambda I)^{-1}$
- Implicit number of param. of smoothing mat. $H=K(K+n \lambda I)^{-1}$
- Equal to p, if $\operatorname{rank}(K)=p$ and $\lambda=0$
- Definition: maximal marginal degrees of freedom

$$
d=n\|\operatorname{diag}(H)\|_{\infty}=n\left\|\operatorname{diag}\left(K(K+n \lambda I)^{-1}\right)\right\|_{\infty}
$$

Note: $\left.\left.\operatorname{tr} H^{2} \leqslant \operatorname{tr} H=\| \operatorname{diag}(H)\right)\left\|_{1} \leqslant n\right\| \operatorname{diag}(H)\right) \|_{\infty}=d$

Degrees of freedom vs. rank of column sampling approximation

- Column-sampling leads to explicit p-dimensional features
- Degrees of freedom correspond to an implicit number d of parameters
- What is the link between p and d ?
- same (or better) performance than full rank problem

Degrees of freedom vs. rank of column sampling approximation

- Column-sampling leads to explicit p-dimensional features
- Degrees of freedom correspond to an implicit number d of parameters
- What is the link between p and d ?
- same (or better) performance than full rank problem
- We "must" have $p \geqslant d$, if
(a) column sampling approximation obtained from held out data
(b) generalization error optimal
- Does $p=O(d)$ suffice?

Generalization performance of column sampling (Bach, 2012)

- Assumptions
$-z \in \mathbb{R}^{n}, K \in \mathbb{R}^{n \times n}$ positive semidefinite, $\lambda>0$,
$-d=n\left\|\operatorname{diag}\left(K(K+n \lambda I)^{-1}\right)\right\|_{\infty}$ and $R^{2}=\|\operatorname{diag}(K)\|_{\infty}$
$-\varepsilon \in \mathbb{R}^{n}$ random vector with finite variance and zero mean
- I uniform random subset of p indices in $\{1, \ldots, n\}$
- Column sampling approximation $L=K(V, I) K(I, I)^{-1} K(I, V)$
- Estimate $\hat{z}_{K}=(K+n \lambda I)^{-1} K(z+\varepsilon)$ and $\hat{z}_{L}=(L+n \lambda I)^{-1} L(z+\varepsilon)$

Generalization performance of column sampling (Bach, 2012)

- Assumptions
$-z \in \mathbb{R}^{n}, K \in \mathbb{R}^{n \times n}$ positive semidefinite, $\lambda>0$,
$-d=n\left\|\operatorname{diag}\left(K(K+n \lambda I)^{-1}\right)\right\|_{\infty}$ and $R^{2}=\|\operatorname{diag}(K)\|_{\infty}$
$-\varepsilon \in \mathbb{R}^{n}$ random vector with finite variance and zero mean
- I uniform random subset of p indices in $\{1, \ldots, n\}$
- Column sampling approximation $L=K(V, I) K(I, I)^{-1} K(I, V)$
- Estimate $\hat{z}_{K}=(K+n \lambda I)^{-1} K(z+\varepsilon)$ and $\hat{z}_{L}=(L+n \lambda I)^{-1} L(z+\varepsilon)$
- For any $\delta \in(0,1)$, if $p \geqslant\left(\frac{32 d}{\delta}+2\right) \log \frac{n R^{2}}{\delta \lambda}$, then

$$
\frac{1}{n} \mathbb{E}_{I} \mathbb{E}_{\varepsilon}\left\|\hat{z}_{L}-z\right\|^{2} \leqslant \frac{1}{n}(1+4 \delta) \mathbb{E}_{\varepsilon}\left\|\hat{z}_{K}-z\right\|^{2} .
$$

Generalization performance of column sampling

- For any $\delta \in(0,1)$, if $p \geqslant\left(\frac{32 d}{\delta}+2\right) \log \frac{n R^{2}}{\delta \lambda}$, then

$$
\frac{1}{n} \mathbb{E}_{I} \mathbb{E}_{\varepsilon}\left\|\hat{z}_{L}-z\right\|^{2} \leqslant \frac{1}{n}(1+4 \delta) \mathbb{E}_{\varepsilon}\left\|\hat{z}_{K}-z\right\|^{2} .
$$

- Discussion
- Proof technique: approximation of subsampled covariance matrices (Tropp, 2011; Gittens, 2011)
- No assumptions on eigengap or on the noise
- Relative approximation guarantee
- Expectations, both with respect to the data (i.e., \mathbb{E}_{ε}) and the sampling of columns (i.e., \mathbb{E}_{I})
- Different from good approximation of K
- Sufficient lower-bound for required rank p
- Logarithmic term in λ

Beyond least-square regression Self-concordant analysis of logistic regression

- Logistic loss $\ell(u)=\log \left(1+e^{-u}\right)$
- No closed-form expressions
- Self-concordance (Nesterov and Nemirovski, 1994)
$-g: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant iff $\forall u \in \mathbb{R},\left|g^{\prime \prime \prime}(u)\right| \leqslant 2 g^{\prime \prime}(u)^{3 / 2}$
- Extension for logistic loss (Bach, 2010): $\forall u \in \mathbb{R},\left|g^{\prime \prime \prime}(u)\right| \leqslant g^{\prime \prime}(u)$
- Allows non-asymptotic analysis of logistic regression
- With exact first-order term
- Replace covariance by Fisher information matrix

Optimal choice of the regularization parameter λ

- Eigenvalues of $K=\Theta\left(n \mu_{i}\right), i=1, \ldots, n$, with $\sum_{i} \mu_{i}=\Theta(1)$ so that $\operatorname{tr} K=\Theta(n)$
- Coordinates of z on eigenbasis of $K=\Theta\left(\sqrt{n \nu_{i}}\right)$ with $\sum_{i} \nu_{i}=\Theta(1)$ so that $\frac{1}{n} z^{\top} z=\Theta(1)$

$\left(\mu_{i}\right)$	$\left(\nu_{i}\right)$	variance	bias	optimal λ	pred. perf.	d	condition
$i^{-2 \beta}$	$i^{-2 \delta}$	$n^{-1} \lambda^{-1 / 2 \beta}$	λ^{2}	$n^{-1 /(2+1 / 2 \beta)}$	$n^{1 /(4 \beta+1)-1}$	$n^{1 /(4 \beta+1)}$	$2 \delta>4 \beta+1$
$i^{-2 \beta}$	$i^{-2 \delta}$	$n^{-1} \lambda^{-1 / 2 \beta}$	$\lambda^{(2 \delta-1) / 2 \beta}$	$n^{-\beta / \delta}$	$n^{1 /(2 \delta)-1}$	$n^{1 /(2 \delta)}$	$2 \delta<4 \beta+1$
$i^{-2 \beta}$	$e^{-\kappa i}$	$n^{-1} \lambda^{-1 / 2 \beta}$	λ^{2}	$n^{-1 /(2+1 / 2 \beta)}$	$n^{1 /(4 \beta+1)-1}$	$n^{1 /(4 \beta+1)}$	
$e^{-\rho i}$	$i^{-2 \delta}$	$n^{-1} \log \frac{1}{\lambda}$	$\left(\log \frac{1}{\lambda}\right)^{1-2 \delta}$	$\exp \left(-n^{1 /(2 \delta)}\right)$	$n^{1 /(2 \delta)-1}$	$n^{1 /(2 \delta)}$	
$e^{-\rho i}$	$e^{-\kappa i}$	$n^{-1} \log \frac{1}{\lambda}$	λ^{2}	$n^{-1 / 2}$	$\log n / n$	$\log n$	$\kappa>2 \rho$
$e^{-\rho i}$	$e^{-\kappa i}$	$n^{-1} \log \frac{1}{\lambda}$	$\lambda^{\kappa / \rho}$	$n^{-\rho / \kappa}$	$\log n / n$	$\log n$	$\kappa<2 \rho$

- Always assume $\delta>1 / 2, \beta>1 / 2, \rho>0, \kappa>0$

Optimal choice of the regularization parameter λ

$\left(\mu_{i}\right)$	$\left(\nu_{i}\right)$	variance	bias	optimal λ	pred. perf.	d	condition
$i^{-2 \beta}$	$i^{-2 \delta}$	$n^{-1} \lambda^{-1 / 2 \beta}$	λ^{2}				
$i^{-2 \beta}$	$i^{-2 \delta}$	$n^{-1} \lambda^{-1 / 2 \beta}$	$\lambda^{(2 \delta-1) / 2 \beta}$	$n^{-\beta /(2+1 / 2 \beta)}$	$n^{1 /(4 \beta+1)-1}$	$n^{1 /(4 \beta+1)}$	$2 \delta>4 \beta+1$
$i^{-2 \beta}$	$e^{-\kappa i}$	$n^{-1} \lambda^{-1 / 2 \beta}$	λ^{2}	$n^{1 /(2 \delta)-1}$	$n^{1 /(2 \delta)}$	$2 \delta<4 \beta+1$	
$e^{-\rho i}$	$i^{-2 \delta}$	$n^{-1} \log \frac{1}{\lambda}$	$\left(\log \frac{1}{\lambda}\right)^{1-2 \delta}$	$\exp \left(-n^{1 /(2 \delta)}\right)$	$n^{1 /(2 \delta)-1}$	$n^{1 /(2 \delta)}$	
$e^{-\rho i}$	$e^{-\kappa i}$	$n^{-1} \log \frac{1}{\lambda}$	λ^{2}	$n^{-1 / 2}$	$\log n / n$	$\log n$	$\kappa>2 \rho$
$e^{-\rho i}$	$e^{-\kappa i}$	$n^{-1} \log \frac{1}{\lambda}$	$\lambda^{\kappa / \rho}$	$n^{-\rho / \kappa}$	$\log n / n$	$\log n$	$\kappa<2 \rho$

- Best possible performance (Johnstone, 1994; Steinwart et al., 2009)
- if $\nu_{i}=O\left(i^{-2 \delta}\right): O\left(n^{1 / 2 \delta-1}\right)$
- if $\nu_{i}=O\left(e^{-\kappa i}\right): O(\log n / n)$
- Faster decay of components $\left(\nu_{i}\right)$ of $K \approx$ smoother functions
- Faster decay of eigenvalues $\left(\mu_{i}\right)$ of $K \approx$ smaller feature space
- Overfitting if feature space too large
- Numerical problems if feature space too small

Optimization algorithms with column sampling Twice-differentiable losses

- Given rank p and regularization parameter λ

1. Select at random p columns of K (without replacement)
2. Compute $\Phi \in \mathbb{R}^{n \times p}$ such that $\Phi \Phi^{\top}=K(V, I) K(I, I)^{-1} K(I, V)$ using incomplete Cholesky decomposition
3. Minimize $\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i},(\Phi w)_{i}\right)+\frac{\lambda}{2}\|w\|^{2}$ using Newton's method (i.e., a single linear system for the square loss).

- Complexity $O\left(p^{2} n\right) \approx O\left(d^{2} n\right)$
- Robustness to ill-conditioning and in particular to small values of λ
- Choice of p in practice?

Simulations on synthetic examples

- Periodic smoothing splines on $[0,1]$ and points x_{1}, \ldots, x_{n} uniformly spread over $[0,1]$
- $k(x, y)=\sum_{i=1}^{\infty} 2 \mu_{i} \cos 2 i \pi(x-y)$, and $f(x)=\sum_{i=1}^{\infty} 2 \nu_{i}^{1 / 2} \cos 2 i \pi x$
- $\nu_{i}=i^{-2 \delta}, \mu_{i}=i^{-2 \beta}, \delta=8, \beta=1,4,8$

- Left: regularization parameter λ, right: predictive performance
- Right: sufficient rank to obtain 1% worse predictive performance

Simulations on pumadyn datasets

- Sufficient rank to obtain 1% worse predictive performance, over the degrees of freedom

- From left to right: pumadyn datasets $32 f h, 32 n h, 32 n m$

Conclusions

- Analysis of column sampling for kernel least-squares regression
- Degrees of freedom: both statistical and computational roles
- Extensions
- Beyond uniform sampling (Boutsidis et al., 2009; S. Kumar, 2012)
- Random design using results from Hsu et al. (2011)
- Achieve $O(d n)$ running-time complexity
- Beyond least-squares regression, e.g., logistic regression (Bach, 2010), SVM (Blanchard et al., 2008)
- Online setting with properly decaying regularization parameter
- Relationship with averaged stochastic gradient (Polyak and Juditsky, 1992)

References

F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:384-414, 2010. ISSN 1935-7524.
F. Bach. Sharp analysis of low-rank kernel matrix approximations. arXiv preprint arXiv:1208.2015, 2012.
G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines. The Annals of Statistics, 36(2):489-531, 2008.
A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active learning. The Journal of Machine Learning Research, 6:1579-1619, 2005.
S. Boucheron and P. Massart. A high-dimensional wilks phenomenon. Probability theory and related fields, 150(3-4):405-433, 2011.
C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for the column subset selection problem. In Proc. SODA, 2009.
A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Found. Comput. Math., 7(3):331-368, 2007. ISSN 1615-3375.
C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on learning accuracy. In Proc. AISTATS, 2010.
O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed budget. In Adv. NIPS, 2005.
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. J. Mac. Learn. Res., 2:243-264, 2001.
A. Gittens. The spectral norm error of the naive Nyström extension. Arxiv preprint arXiv:1110.5305, 2011.
T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman \& Hall, 1990.
D. Hsu, S. M. Kakade, and T. Zhang. An analysis of random design linear regression. arXiv preprint arXiv:1106.2363, 2011.
R. Jin, T. Yang, M. Mahdavi, Y.-F. Li, and Z.-H. Zhou. Improved bound for the Nyström's method and its application to kernel classification. Technical Report 1111.2262v2, arXiv, 2011.
I. M. Johnstone. Minimax Bayes, asymptotic minimax and sparse wavelet priors. Statistical Decision Theory and Related Topics, pages 303-326, 1994.
G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applicat., 33:82-95, 1971.
M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences, 106(3):697-702, 2009.
Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in convex programming. SIAM studies in Applied Mathematics, 1994.
F. Orabona, J. Keshet, and B. Caputo. The Projectron: a bounded kernel-based perceptron. In Proc. ICML, 2008.
B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838-855, 1992.
A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in neural information processing systems, 20:1177-1184, 2007.
A. Talwalkar S. Kumar, M. Mohri. Sampling methods for the Nyström method. JMLR, 13:981-1006, 2012.
J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.
A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In Proc. ICML, 2000.
K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rates for regularized objectives. Advances in Neural Information Processing Systems, 22, 2008.
I. Steinwart, D. Hush, C. Scovel, et al. Optimal rates for regularized least squares regression. In Proceedings of the 22nd Annual Conference on Learning Theory, pages 79-93, 2009.
J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, pages 1-46, 2011.
G. Wahba. Spline Models for Observational Data. SIAM, 1990.
Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted stochastic gradient descent for large-scale svm training. Journal of Machine Learning Research, 13:3103-3131, 2012.
C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Adv. NIPS, 2001.

