Semidefinite optimization and convex algebraic geometry

Pablo A. Parrilo
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

NIPS - December 2012

This talk

- Convex sets with algebraic descriptions
- The role of semidefinite programming and sums of squares
- Unifying idea: convex hull of algebraic varieties
- Examples and applications throughout
- Discuss results, but also open questions
- Computational considerations

- Connections with other areas of mathematics

Convex sets: geometry vs. algebra

The geometric theory of convex sets (e.g., Minkowski, Carathéodory, Fenchel) is very rich and well-understood.

Enormous importance in applied mathematics and engineering, in particular in optimization.

But, what if we are concerned with the representation of these geometric objects? For instance, basic semialgebraic sets?

How do the algebraic, geometric, and computational aspects interact?

Ex: Convex optimization is not always "easy".

The polyhedral case

Consider first the case of polyhedra, which are described by finitely many linear inequalities $\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i}\right\}$.

- Behave well under projections (Fourier-Motzkin)
- Farkas' lemma (or duality) gives emptiness certificates
- Good associated computational techniques
- Optimization over polyhedra is linear programming (LP)

> Great. But how to move away from linearity? For instance, if we want convex sets described by polynomial inequalities?

Claim: semidefinite programming is an essential tool

The polyhedral case

Consider first the case of polyhedra, which are described by finitely many linear inequalities $\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i}\right\}$.

- Behave well under projections (Fourier-Motzkin)
- Farkas' lemma (or duality) gives emptiness certificates
- Good associated computational techniques
- Optimization over polyhedra is linear programming (LP)

Great. But how to move away from linearity? For instance, if we want convex sets described by polynomial inequalities?

Claim: semidefinite programming is an essential tool.

Semidefinite programming (SDP, LMIs)

A broad generalization of LP to symmetric matrices

$$
\min \operatorname{Tr} C X \quad \text { s.t. } \quad X \in \mathcal{L} \cap \mathcal{S}_{+}^{n}
$$

- Intersection of an affine subspace \mathcal{L} and the cone of positive semidefinite matrices.
- Feasible set is called spectrahedron
- Lots of applications. A true "revolution" in computational methods for engineering applications
- Convex finite dimensional optimization. Nice duality theory.
- Essentially, solvable in polynomial time (interior point, etc.)

Example

Consider the feasible set of the SDP:

$$
\left[\begin{array}{ccc}
x & 0 & y \\
0 & 1 & -x \\
y & -x & 1
\end{array}\right] \succeq 0
$$

- Convex, but not necessarily polyhedral
- In general, piecewise-smooth
- Determinant vanishes on the boundary

In this case, the determinant is the elliptic curve $x-x^{3}=y^{2}$.

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
In the LP case, well-understood question: finite number of extreme points/rays (polyhedral sets)

Are there "obstructions" to SDP representability?

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
In the LP case, well-understood question: finite number of extreme points/rays (polyhedral sets)

Are there "obstructions" to SDP representability?

Semidefinite representations

A natural question in convex optimization:
What sets can be represented using semidefinite programming?
In the LP case, well-understood question: finite number of extreme points/rays (polyhedral sets)

Are there "obstructions" to SDP representability?

Known SDP-representable sets

- Many interesting sets are known to be SDP-representable (e.g., polyhedra, convex quadratics, matrix norms, etc.)
- Preserved by "natural" properties: affine transformations, convex hull, polarity, etc.
- Several known structural results (e.g., facial exposedness)

Work of Nesterov-Nemirovski, Ramana, Tunçel, Güler, Renegar, Chua, etc.

Existing results

Obvious necessary conditions: \mathcal{S} must be convex and semialgebraic.
Several versions of the problem:

- Exact vs. approximate representations.
- "Direct" (non-lifted) representations: no additional variables.

- "Lifted" representations: can use extra variables (projection)

Projection helps a lot!

Existing results

Obvious necessary conditions: \mathcal{S} must be convex and semialgebraic.
Several versions of the problem:

- Exact vs. approximate representations.
- "Direct" (non-lifted) representations: no additional variables.

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad A_{0}+\sum_{i} x_{i} A_{i} \succeq 0
$$

- "Lifted" representations: can use extra variables (projection)

$$
x \in \mathcal{S} \quad \Leftrightarrow \quad \exists y \text { s.t. } A_{0}+\sum_{i} x_{i} A_{i}+\sum y_{j} B_{j} \succeq 0
$$

Projection helps a lot!

Liftings and projections

Often, "simpler" descriptions of convex sets from higher-dimensions.
Ex: The n-dimensional crosspolytope (ℓ_{1} unit ball). Requires 2^{n} linear inequalities, of the form

$$
\pm x_{1} \pm x_{2} \pm \cdots \pm x_{n} \leq 1
$$

However, can efficiently represent it as a projection:
$\left\{(x, y) \in \mathbb{R}^{2 n}, \quad \sum_{i=1}^{n} y_{i}=1, \quad-y_{i} \leq x_{i} \leq y_{i} \quad i=1, \ldots, n\right\}$
Only $2 n$ variables, and $2 n+1$ constraints!
In convexity, elimination is not always a good idea.
Quite the opposite, it is often advantageous to go to higher-dimensional
spaces, where descriptions (can) become simpler.

Liftings and projections

Often, "simpler" descriptions of convex sets from higher-dimensions.
Ex: The n-dimensional crosspolytope (ℓ_{1} unit ball). Requires 2^{n} linear inequalities, of the form

$$
\pm x_{1} \pm x_{2} \pm \cdots \pm x_{n} \leq 1
$$

However, can efficiently represent it as a projection:
$\left\{(x, y) \in \mathbb{R}^{2 n}, \quad \sum_{i=1}^{n} y_{i}=1, \quad-y_{i} \leq x_{i} \leq y_{i} \quad i=1, \ldots, n\right\}$
Only $2 n$ variables, and $2 n+1$ constraints!
In convexity, elimination is not always a good idea.
Quite the opposite, it is often advantageous to go to higher-dimensional spaces, where descriptions (can) become simpler.

Example: k-ellipse

Fix a positive real number d and fix k distinct points $\left(u_{i}, v_{i}\right)$ in \mathbb{R}^{2}. The k-ellipse with foci $\left(u_{i}, v_{i}\right)$ and radius d is the following curve in the plane:

$$
\left\{(x, y) \in \mathbb{R}^{2}: \sum_{i=1}^{k} \sqrt{\left(x-u_{i}\right)^{2}+\left(y-v_{i}\right)^{2}}=d\right\}
$$

Thm:(Nie-P.-Sturmfels 07) The k-ellipse has degree 2^{k} if k is odd and degree $2^{k}-\binom{k}{k / 2}$ if k is even. It has an explicit $2^{k} \times 2^{k}$ SDP representation.

5-ellipse

Results on exact SDP representations

- Direct representations:
- Necessary condition: rigid convexity. Helton \& Vinnikov (2004) showed that in \mathbb{R}^{2}, rigid convexity is also sufficient.
- Related to hyperbolic polynomials and the Lax conjecture (Güler, Renegar, Lewis-P.-Ramana 2005)
- For higher dimensions the problem is open.
- Lifted representations:
- No known nontrivial obstructions.
- Does every convex basic SA set have a lifted exact SDP representation?
- (Helton \& Nie 2007): Under strict positive curvature assumptions on
the boundary, this is true.

Results on exact SDP representations

- Direct representations:
- Necessary condition: rigid convexity. Helton \& Vinnikov (2004) showed that in \mathbb{R}^{2}, rigid convexity is also sufficient.
- Related to hyperbolic polynomials and the Lax conjecture (Güler, Renegar, Lewis-P.-Ramana 2005)
- For higher dimensions the problem is open.
- Lifted representations:
- No known nontrivial obstructions.
- Does every convex basic SA set have a lifted exact SDP representation?
- (Helton \& Nie 2007): Under strict positive curvature assumptions on the boundary, this is true.

Sum of squares

A multivariate polynomial $p(x)$ is a sum of squares (SOS) if

$$
p(x)=\sum_{i} q_{i}^{2}(x), \quad q_{i}(x) \in \mathbb{R}[x] .
$$

- If $p(x)$ is SOS, then clearly $p(x) \geq 0 \forall x \in \mathbb{R}^{n}$.
- Converse not true, in general (Hilbert). Counterexamples exist.
- For univariate or quadratics, nonnegativity is equivalent to SOS.
- Convex condition, can be reduced to SDP.

Checking the SOS condition

Basic "Gram matrix" method (Shor 87, Choi-Lam-Reznick 95, Powers-Wörmann 98, Nesterov, Lasserre, P., etc.)

A polynomial $F(x)$ is SOS if and only if

$$
F(x)=w(x)^{T} Q w(x)
$$

where $w(x)$ is a vector of monomials, and $Q \succeq 0$.

Checking the SOS condition

Let $F(x)=\sum f_{\alpha} x^{\alpha}$. Index rows and columns of Q by monomials. Then,

$$
F(x)=w(x)^{T} Q w(x) \quad \Leftrightarrow \quad f_{\alpha}=\sum_{\beta+\gamma=\alpha} Q_{\beta \gamma}
$$

Thus, we have the SDP feasibility problem

$$
f_{\alpha}=\sum_{\beta+\gamma=\alpha} Q_{\beta \gamma}, \quad Q \succeq 0
$$

- Factorize $Q=L^{T} L$. The SOS is given by $f=L z$.

SOS Example

$$
\begin{aligned}
F(x, y) & =2 x^{4}+5 y^{4}-x^{2} y^{2}+2 x^{3} y \\
& =\left[\begin{array}{c}
x^{2} \\
y^{2} \\
x y
\end{array}\right]^{T}\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
y^{2} \\
x y
\end{array}\right] \\
& =q_{11} x^{4}+q_{22} y^{4}+\left(q_{33}+2 q_{12}\right) x^{2} y^{2}+2 q_{13} x^{3} y+2 q_{23} x y^{3}
\end{aligned}
$$

An SDP with equality constraints. Solving, we obtain:

$$
Q=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-3 & 5 & 0 \\
1 & 0 & 5
\end{array}\right]=L^{T} L, \quad L=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

And therefore $F(x, y)=\frac{1}{2}\left(2 x^{2}-3 y^{2}+x y\right)^{2}+\frac{1}{2}\left(y^{2}+3 x y\right)^{2}$

From feasibility to optimization

SOS directly yield lower bounds for optimization! $F(x)-\gamma$ is SOS $\quad \Rightarrow \quad F(x) \geq \gamma$ for all x

- Finding the best such γ is also an SDP
- Typically, very high-auality bounds
- If exact, can recover exact solution
- Natural extensions to constrained case

From feasibility to optimization

SOS directly yield lower bounds for optimization!

$$
F(x)-\gamma \text { is SOS } \quad \Rightarrow \quad F(x) \geq \gamma \text { for all } x
$$

- Finding the best such γ is also an SDP
- Typically, very high-quality bounds
- If exact, can recover exact solution
- Natural extensions to constrained case

Convex hulls of algebraic varieties

Back to SDP representations...
Focus here on a specific, but very important case.
Given a set $S \subset \mathbb{R}^{n}$, we can define its convex hull

We are interested in the case where S is a real algebraic variety.

Convex hulls of algebraic varieties

Back to SDP representations...
Focus here on a specific, but very important case.
Given a set $S \subset \mathbb{R}^{n}$, we can define its convex hull

$$
\operatorname{conv} S:=\left\{\sum_{i} \lambda_{i} x_{i}: x_{i} \in S, \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0\right\}
$$

We are interested in the case where S is a real algebraic variety.

Why?

Many interesting problems require or boil down exactly to understanding and describing convex hulls of (toric) algebraic varieties.

- Nonnegative polynomials and optimization
- Polynomial games
- Convex relaxations for minimum-rank

We discuss these next.

Polynomial optimization

Consider the unconstrained minimization of a multivariate polynomial

$$
p(x)=\sum_{\alpha \in S} p_{\alpha} x^{\alpha},
$$

where $x \in \mathbb{R}^{n}$ and S is a given set of monomials (e.g., all monomials of total degree less than or equal to $2 d$, in the dense case).

Define the (real, toric) algebraic variety $V_{S} \subset \mathbb{R}^{|S|}$.

This is the image of \mathbb{R}^{n} under the monomial map (e.g., in the
homogeneous case, the Veronese embedding)
Want to study the convex hull of V_{S}. Extends to the constrained case.

Polynomial optimization

Consider the unconstrained minimization of a multivariate polynomial

$$
p(x)=\sum_{\alpha \in S} p_{\alpha} x^{\alpha},
$$

where $x \in \mathbb{R}^{n}$ and S is a given set of monomials (e.g., all monomials of total degree less than or equal to $2 d$, in the dense case).

Define the (real, toric) algebraic variety $V_{S} \subset \mathbb{R}^{|S|}$:

$$
V_{S}:=\left\{\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{|S|}}\right): x \in \mathbb{R}^{n}\right\} .
$$

This is the image of \mathbb{R}^{n} under the monomial map (e.g., in the homogeneous case, the Veronese embedding).
Want to study the convex hull of V_{S}. Extends to the constrained case.

Univariate case

Convex hull of the rational normal curve $\left(1, t, \ldots, t^{d}\right)$.
Not polyhedral.
Known geometry (Karlin-Shapley)

y_{2}
"Simplicial": every supporting hyperplane yields a simplex. Related to cyclic polytopes.

Polynomial optimization

We have then (almost trivially):

$$
\inf _{x \in \mathbb{R}^{n}} p(x)=\inf \left\{p^{T} y: y \in \operatorname{conv} V_{S}\right\}
$$

Optimizing a nonconvex polynomial is equivalent to linear optimization over a convex set (!)

> Unfortunately, in general, it is NP-hard to check membership in conv V_{S}. Nevertheless, we can turn this around, and use SOS relaxations to obtain "good" approximate SDP descriptions of the convex hull V_{S}.

Polynomial optimization

We have then (almost trivially):

$$
\inf _{x \in \mathbb{R}^{n}} p(x)=\inf \left\{p^{T} y: y \in \operatorname{conv} V_{S}\right\}
$$

Optimizing a nonconvex polynomial is equivalent to linear optimization over a convex set (!)

Unfortunately, in general, it is NP-hard to check membership in conv V_{S}. Nevertheless, we can turn this around, and use SOS relaxations to obtain "good" approximate SDP descriptions of the convex hull V_{S}.

A geometric interlude

How is this possible? Convex optimization for solving nonconvex problems?
Convexity is relative. Every problem can be trivially "lifted" to a convex setting (in general, infinite dimensional).
Ex: mixed strategies in games, "relaxed" controls, Fokker-Planck, etc. Interestingly, however, often a finite (and small) dimension is enough.

Consider the set defined by

Clearly non-convex.
Can we use convex optimization?

A geometric interlude

How is this possible? Convex optimization for solving nonconvex problems?
Convexity is relative. Every problem can be trivially "lifted" to a convex setting (in general, infinite dimensional).
Ex: mixed strategies in games, "relaxed" controls, Fokker-Planck, etc. Interestingly, however, often a finite (and small) dimension is enough.

Clearly non-convex.
Can we use convex optimization?

A geometric interlude

How is this possible? Convex optimization for solving nonconvex problems?
Convexity is relative. Every problem can be trivially "lifted" to a convex setting (in general, infinite dimensional).
Ex: mixed strategies in games, "relaxed" controls, Fokker-Planck, etc. Interestingly, however, often a finite (and small) dimension is enough.

Consider the set defined by

$$
1 \leq x^{2}+y^{2} \leq 2
$$

Clearly non-convex.
Can we use convex optimization?

Geometric interpretation

A polynomial "lifting" to a higher dimensional space:

$$
(x, y) \mapsto\left(x, y, x^{2}+y^{2}\right)
$$

The nonconvex set is the projection of the extreme points of a convex set.

In particular, the convex set defined by

$$
\begin{aligned}
& x^{2}+y^{2} \leq z \\
& 1 \leq z \leq 4
\end{aligned}
$$

A "polar" viewpoint

Any convex set \mathcal{S} is uniquely defined by its supporting hyperplanes.

Thus, if we can optimize a linear function over a set using SDP, we effectively have an SDP representation.
Need to solve (or approximate)

$$
\min c^{T} x \quad \text { s.t. } x \in \mathcal{S}
$$

If \mathcal{S} is defined by polynomial equations/inequalities, can use SOS.

Example: orthogonal matrices

Consider O (3), the group of 3×3 orthogonal matrices of determinant one. It has two connected components (sign of determinant).

We can use the double-cover of $S O(3)$ with $S U(2)$ to provide an exact SDP representation of the convex hull of $S O(3)$:

$$
\left[\begin{array}{ccc}
Z_{11}+Z_{22}-Z_{33}-Z_{44} & 2 Z_{23}-2 Z_{14} & 2 Z_{24}+2 Z_{13} \\
2 Z_{23}+2 Z_{14} & Z_{11}-Z_{22}+Z_{33}-Z_{44} & 2 Z_{34}-2 Z_{12} \\
2 Z_{24}-2 Z_{13} & 2 Z_{34}+2 Z_{12} & Z_{11}-Z_{22}-Z_{33}+Z_{44}
\end{array}\right], \quad Z \succeq 0, \quad \operatorname{Tr} Z=1
$$

This is a convex set in \mathbb{R}^{9}.
Here is a two-dimensional projection.

Minimum rank and convex relaxations

Consider the rank minimization problem

$$
\text { minimize } \operatorname{rank} X \quad \text { subject to } \mathcal{A}(X)=b
$$

where $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ is a linear map.
Find the minimum-rank matrix in a given subspace. In general, NP-hard.
Since rank is hard, let's use instead its convex envelope, the nuclear norm
The nuclear norm of a matrix (alternatively, Schatten 1-norm, Ky Fan r-norm, or trace class norm) is the sum of its singular values, i.e.,

Minimum rank and convex relaxations

Consider the rank minimization problem

$$
\text { minimize } \operatorname{rank} X \quad \text { subject to } \mathcal{A}(X)=b,
$$

where $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ is a linear map.
Find the minimum-rank matrix in a given subspace. In general, NP-hard.
Since rank is hard, let's use instead its convex envelope, the nuclear norm. The nuclear norm of a matrix (alternatively, Schatten 1-norm, Ky Fan r-norm, or trace class norm) is the sum of its singular values, i.e.,

$$
\|X\|_{*}:=\sum_{i=1}^{r} \sigma_{i}(X)
$$

Convex hulls and nuclear norm

Nuclear norm ball is convex hull of rank one matrices!

$$
B=\operatorname{conv}\left\{u v^{T}: u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n},\|u\|^{2}=1,\|v\|^{2}=1\right\}
$$

Exactly SDP-characterizable.

Under certain conditions (e.g., if \mathcal{A} is "random"), optimizing the nuclear norm yields the true minimum rank solution.

For details, see Recht-Fazel-P., "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," SIAM Review, 2010.

Convex hulls and nuclear norm

Nuclear norm ball is convex hull of rank one matrices!
$B=\operatorname{conv}\left\{u v^{T}: u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n},\|u\|^{2}=1,\|v\|^{2}=1\right\}$
Exactly SDP-characterizable.

Under certain conditions (e.g., if \mathcal{A} is "random"), optimizing the nuclear norm yields the true minimum rank solution.

For details, see Recht-Fazel-P., "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," SIAM Review, 2010.

Rank, sparsity, and beyond: atomic norms

Exactly the same constructions can be applied to more general situations: atomic norms.

Structure-inducing regularizer is convex hull of atom set, e.g., low-rank matrices/tensors, permutation matrices, cut matrices, etc.

Generally NP-hard to compute, but good SDP approximations.

Statistical guarantees for recovery based on Gaussian width of tangent cones. Interesting interplay between computational and sample complexities.

For details, see Chandrasekaran-Recht-P.-Willsky, "The convex geometry of linear inverse problems," Found. Comp. Math., 2012.

Connections

Many fascinating links to other areas of mathematics:

- Probability (moments, exchangeability and de Finetti, etc)
- Operator theory (via Gelfand-Neimark-Segal)
- Harmonic analysis on semigroups
- Noncommutative probability (i.e., quantum mechanics)
- Complexity and proof theory (degrees of certificates)
- Graph theory (perfect graphs)
- Tropical geometry (SDP over more general fields)

Algebraic structure

- Algebraic sparsity: polynomials with few nonzero coefficients.
- Newton polytopes techniques.
- Ideal structure: equality constraints.
- SOS on quotient rings.
- Compute in the coordinate ring. Quotient bases.
- Graph structure:
- Dependency graph among the variables.
- Symmetries: invariance under a group (w/ K. Gatermann)
- SOS on invariant rings
- Representation theory and invariant-theoretic methods.
- Enabling factor in applications (e.g., Markov chains)

Numerical structure

- Rank one SDPs.
- Dual coordinate change makes all constraints rank one
- Efficient computation of Hessians and gradients
- Representations
- Interpolation representation
- Orthogonalization
- Displacement rank
- Fast solvers for search direction

Summary

- A very rich class of optimization problems
- Methods have enabled many new applications
- Interplay of many branches of mathematics
- Structure must be exploited for reliability and efficiency
- Combination of numerical and algebraic techniques.

If you want to know more

- Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo
- NSF FRG project "SDP and convex algebraic geometry" website www.math.washington.edu/~thomas/frg/frg.html (Helton/P./Nie/Sturmfels/Thomas), and new SIAM book!

Summary

- A very rich class of optimization problems
- Methods have enabled many new applications
- Interplay of many branches of mathematics
- Structure must be exploited for reliability and efficiency
- Combination of numerical and algebraic techniques.

If you want to know more:

- Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo
- NSF FRG project "SDP and convex algebraic geometry" website www.math.washington.edu/~thomas/frg/frg.html (Helton/P./Nie/Sturmfels/Thomas), and new SIAM book!

Summary

- A very rich class of optimization problems
- Methods have enabled many new applications
- Interplay of many branches of mathematics
- Structure must be exploited for reliability and efficiency
- Combination of numerical and algebraic techniques.

If you want to know more:

- Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo
- NSF FRG project "SDP and convex algebraic geometry" website www.math.washington.edu/~thomas/frg/frg.html (Helton/P./Nie/Sturmfels/Thomas), and new SIAM book!
Thanks for your attention!

