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This talk

Convex sets with algebraic descriptions

The role of semidefinite programming and sums
of squares

Unifying idea: convex hull of algebraic varieties

Examples and applications throughout

Discuss results, but also open questions

Computational considerations

Connections with other areas of mathematics
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Convex sets: geometry vs. algebra

The geometric theory of convex sets (e.g., Minkowski, Carathéodory,
Fenchel) is very rich and well-understood.

Enormous importance in applied mathematics and engineering, in
particular in optimization.

But, what if we are concerned with the representation of these geometric
objects? For instance, basic semialgebraic sets?

How do the algebraic, geometric, and computational aspects interact?

Ex: Convex optimization is not always “easy”.
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The polyhedral case

Consider first the case of polyhedra, which are described by finitely many
linear inequalities {x ∈ Rn : aTi x ≤ bi}.

Behave well under projections (Fourier-Motzkin)

Farkas’ lemma (or duality) gives emptiness certificates

Good associated computational techniques

Optimization over polyhedra is linear programming (LP)

Great. But how to move away from linearity? For instance, if we want
convex sets described by polynomial inequalities?

Claim: semidefinite programming is an essential tool.
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Semidefinite programming (SDP, LMIs)

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn+

PSD cone

O

L

Intersection of an affine subspace L and the cone of positive
semidefinite matrices.

Feasible set is called spectrahedron

Lots of applications. A true “revolution” in computational methods
for engineering applications

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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Example

Consider the feasible set of the SDP:x 0 y
0 1 −x
y −x 1

 � 0. -6 -5 -4 -3 -2 -1 1 2
x
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Convex, but not necessarily polyhedral

In general, piecewise-smooth

Determinant vanishes on the boundary

In this case, the determinant is the elliptic curve x − x3 = y2.
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Semidefinite representations

A natural question in convex optimization:

What sets can be represented using semidefinite programming?

In the LP case, well-understood question: finite number of extreme
points/rays (polyhedral sets)

Are there “obstructions” to SDP representability?
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Known SDP-representable sets

Many interesting sets are known to be
SDP-representable (e.g., polyhedra, convex
quadratics, matrix norms, etc.)

Preserved by “natural” properties: affine
transformations, convex hull, polarity, etc.

Several known structural results (e.g., facial
exposedness)

Work of Nesterov-Nemirovski, Ramana, Tunçel,
Güler, Renegar, Chua, etc.
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Existing results

Obvious necessary conditions: S must be convex and semialgebraic.

Several versions of the problem:

Exact vs. approximate representations.

“Direct” (non-lifted) representations: no additional variables.

x ∈ S ⇔ A0 +
∑
i

xiAi � 0

“Lifted” representations: can use extra variables (projection)

x ∈ S ⇔ ∃y s.t. A0 +
∑
i

xiAi +
∑

yjBj � 0

Projection helps a lot!

9 / 34



Existing results

Obvious necessary conditions: S must be convex and semialgebraic.

Several versions of the problem:

Exact vs. approximate representations.

“Direct” (non-lifted) representations: no additional variables.

x ∈ S ⇔ A0 +
∑
i

xiAi � 0

“Lifted” representations: can use extra variables (projection)

x ∈ S ⇔ ∃y s.t. A0 +
∑
i

xiAi +
∑

yjBj � 0

Projection helps a lot!

9 / 34



Liftings and projections

Often, “simpler” descriptions of convex sets from higher-dimensions.

Ex: The n-dimensional crosspolytope (`1 unit ball). Requires
2n linear inequalities, of the form

±x1 ± x2 ± · · · ± xn ≤ 1.

However, can efficiently represent it as a projection:

{(x , y) ∈ R2n,
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi i = 1, . . . , n}

Only 2n variables, and 2n + 1 constraints!
In convexity, elimination is not always a good idea.
Quite the opposite, it is often advantageous to go to higher-dimensional
spaces, where descriptions (can) become simpler.
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Example: k-ellipse

Fix a positive real number d and fix k distinct points (ui , vi ) in R2. The
k-ellipse with foci (ui , vi ) and radius d is the following curve in the plane:{

(x , y) ∈ R2 :
k∑

i=1

√
(x − ui )2 + (y − vi )2 = d

}
.

Thm:(Nie-P.-Sturmfels 07) The k-ellipse has degree 2k if k is odd and
degree 2k−

( k
k/2

)
if k is even. It has an explicit 2k × 2k SDP representation.
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5-ellipse
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Results on exact SDP representations

Direct representations:

Necessary condition: rigid convexity. Helton & Vinnikov (2004) showed
that in R2, rigid convexity is also sufficient.
Related to hyperbolic polynomials and the Lax conjecture (Güler,
Renegar, Lewis-P.-Ramana 2005)
For higher dimensions the problem is open.

Lifted representations:

No known nontrivial obstructions.
Does every convex basic SA set have a lifted exact SDP representation?
(Helton & Nie 2007): Under strict positive curvature assumptions on
the boundary, this is true.
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Sum of squares

A multivariate polynomial p(x) is a sum of squares (SOS) if

p(x) =
∑
i

q2i (x), qi (x) ∈ R[x ].

If p(x) is SOS, then clearly p(x) ≥ 0 ∀x ∈ Rn.

Converse not true, in general (Hilbert). Counterexamples exist.

For univariate or quadratics, nonnegativity is equivalent to SOS.

Convex condition, can be reduced to SDP.
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Checking the SOS condition

Basic “Gram matrix” method (Shor 87, Choi-Lam-Reznick 95,
Powers-Wörmann 98, Nesterov, Lasserre, P., etc.)

A polynomial F (x) is SOS if and only if

F (x) = w(x)TQw(x),

where w(x) is a vector of monomials, and Q � 0.
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Checking the SOS condition

Let F (x) =
∑

fαx
α. Index rows and columns of Q by monomials. Then,

F (x) = w(x)TQw(x) ⇔ fα =
∑

β+γ=α

Qβγ

Thus, we have the SDP feasibility problem

fα =
∑

β+γ=α

Qβγ , Q � 0

Factorize Q = LTL. The SOS is given by f = Lz .
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SOS Example

F (x , y) = 2x4 + 5y4 − x2y2 + 2x3y

=

 x2

y2

xy

T  q11 q12 q13
q12 q22 q23
q13 q23 q33

 x2

y2

xy


= q11x

4 + q22y
4 + (q33 + 2q12)x2y2 + 2q13x

3y + 2q23xy
3

An SDP with equality constraints. Solving, we obtain:

Q =

 2 −3 1
−3 5 0
1 0 5

 = LTL, L =
1√
2

[
2 −3 1
0 1 3

]

And therefore F (x , y) = 1
2 (2x2 − 3y2 + xy)2 + 1

2 (y2 + 3xy)2
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From feasibility to optimization

SOS directly yield lower bounds for optimization!

F (x)− γ is SOS ⇒ F (x) ≥ γ for all x
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Finding the best such γ is also an SDP

Typically, very high-quality bounds

If exact, can recover exact solution

Natural extensions to constrained case
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Convex hulls of algebraic varieties

Back to SDP representations...
Focus here on a specific, but very important case.

Given a set S ⊂ Rn, we can define its convex hull

convS :=

{∑
i

λixi : xi ∈ S ,
∑
i

λi = 1, λi ≥ 0

}

We are interested in the case where S is a real algebraic variety.
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Why?

Many interesting problems require or boil down exactly to understanding
and describing convex hulls of (toric) algebraic varieties.

Nonnegative polynomials and optimization

Polynomial games

Convex relaxations for minimum-rank

We discuss these next.
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Polynomial optimization

Consider the unconstrained minimization of a multivariate polynomial

p(x) =
∑
α∈S

pαx
α,

where x ∈ Rn and S is a given set of monomials (e.g., all monomials of
total degree less than or equal to 2d , in the dense case).

Define the (real, toric) algebraic variety VS ⊂ R|S|:

VS := {(xα1 , . . . , xα|S|) : x ∈ Rn} .

This is the image of Rn under the monomial map (e.g., in the
homogeneous case, the Veronese embedding).
Want to study the convex hull of VS . Extends to the constrained case.
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Univariate case

Convex hull of the rational normal curve
(1, t, . . . , td).
Not polyhedral.
Known geometry (Karlin-Shapley)
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“Simplicial”: every supporting hyperplane yields a simplex.
Related to cyclic polytopes.
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Polynomial optimization

We have then (almost trivially):

inf
x∈Rn

p(x) = inf{pT y : y ∈ convVS}

Optimizing a nonconvex polynomial is equivalent to linear optimization
over a convex set (!)

Unfortunately, in general, it is NP-hard to check membership in convVS .
Nevertheless, we can turn this around, and use SOS relaxations to obtain
“good” approximate SDP descriptions of the convex hull VS .
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A geometric interlude

How is this possible? Convex optimization for solving nonconvex problems?

Convexity is relative. Every problem can be trivially “lifted” to a convex
setting (in general, infinite dimensional).
Ex: mixed strategies in games, “relaxed” controls, Fokker-Planck, etc.
Interestingly, however, often a finite (and small) dimension is enough.

Consider the set defined by

1 ≤ x2 + y2 ≤ 2

Clearly non-convex.
Can we use convex optimization?
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Geometric interpretation

A polynomial “lifting” to a higher dimensional space:

(x , y) 7→ (x , y , x2 + y2)

The nonconvex set is the projection of the extreme points of a convex set.

In particular, the convex set
defined by

x2 + y2 ≤ z

1 ≤ z ≤ 4
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A “polar” viewpoint

Any convex set S is uniquely defined by its supporting
hyperplanes.
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Thus, if we can optimize a linear function over a set using SDP, we
effectively have an SDP representation.
Need to solve (or approximate)

min cT x s.t. x ∈ S

If S is defined by polynomial equations/inequalities, can use SOS.
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Example: orthogonal matrices

Consider O(3), the group of 3× 3 orthogonal matrices of determinant one.
It has two connected components (sign of determinant).

We can use the double-cover of SO(3) with SU(2) to provide an exact
SDP representation of the convex hull of SO(3):Z11 + Z22 − Z33 − Z44 2Z23 − 2Z14 2Z24 + 2Z13

2Z23 + 2Z14 Z11 − Z22 + Z33 − Z44 2Z34 − 2Z12
2Z24 − 2Z13 2Z34 + 2Z12 Z11 − Z22 − Z33 + Z44

 , Z � 0, Tr Z = 1.

This is a convex set in R9.
Here is a two-dimensional projection.
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Minimum rank and convex relaxations

Consider the rank minimization problem

minimize rankX subject to A(X ) = b,

where A : Rm×n → Rp is a linear map.
Find the minimum-rank matrix in a given subspace. In general, NP-hard.

Since rank is hard, let’s use instead its convex envelope, the nuclear norm.
The nuclear norm of a matrix (alternatively, Schatten 1-norm, Ky Fan
r -norm, or trace class norm) is the sum of its singular values, i.e.,

‖X‖∗ :=
r∑

i=1

σi (X ).
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Convex hulls and nuclear norm

Nuclear norm ball is convex hull of rank one matrices!

B = conv{uvT : u ∈ Rm, v ∈ Rn, ||u||2 = 1, ||v ||2 = 1}

Exactly SDP-characterizable.
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Under certain conditions (e.g., if A is “random”), optimizing the nuclear
norm yields the true minimum rank solution.

For details, see Recht-Fazel-P., “Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization,” SIAM Review, 2010.
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Rank, sparsity, and beyond: atomic norms

Exactly the same constructions can be applied to more general situations:
atomic norms.

Structure-inducing regularizer is convex hull of atom set, e.g., low-rank
matrices/tensors, permutation matrices, cut matrices, etc.

Generally NP-hard to compute, but good SDP
approximations.

Statistical guarantees for recovery based on Gaussian
width of tangent cones. Interesting interplay between
computational and sample complexities.

For details, see Chandrasekaran-Recht-P.-Willsky, “The convex geometry of linear
inverse problems,” Found. Comp. Math., 2012.
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Connections

Many fascinating links to other areas of mathematics:

Probability (moments, exchangeability and de Finetti, etc)

Operator theory (via Gelfand-Neimark-Segal)

Harmonic analysis on semigroups

Noncommutative probability (i.e., quantum mechanics)

Complexity and proof theory (degrees of certificates)

Graph theory (perfect graphs)

Tropical geometry (SDP over more general fields)
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Algebraic structure

Algebraic sparsity: polynomials with few nonzero coefficients.

Newton polytopes techniques.

Ideal structure: equality constraints.

SOS on quotient rings.
Compute in the coordinate ring. Quotient bases.

Graph structure:

Dependency graph among the variables.

Symmetries: invariance under a group (w/ K. Gatermann)

SOS on invariant rings
Representation theory and invariant-theoretic methods.
Enabling factor in applications (e.g., Markov chains)
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Numerical structure

Rank one SDPs.

Dual coordinate change makes all constraints rank one
Efficient computation of Hessians and gradients

Representations

Interpolation representation
Orthogonalization

Displacement rank

Fast solvers for search direction
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Summary

A very rich class of optimization problems

Methods have enabled many new applications

Interplay of many branches of mathematics

Structure must be exploited for reliability and
efficiency

Combination of numerical and algebraic
techniques.
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This book provides a self-contained, accessible introduction to the mathematical 
advances and challenges resulting from the use of semidefinite programming in 
polynomial optimization. This quickly evolving research area with contributions from the 
diverse fields of convex geometry, algebraic geometry, and optimization is known as 
convex algebraic geometry.

Each chapter addresses a fundamental aspect of convex algebraic geometry. The book 
begins with an introduction to nonnegative polynomials and sums of squares and their 
connections to semidefinite programming and quickly advances to several areas at the 
forefront of current research. These include

•   semidefinite representability of convex sets,
•   duality theory from the point of view of algebraic geometry, and 
•   nontraditional topics such as sums of squares of complex forms and 

noncommutative sums of squares polynomials.

Suitable for a class or seminar, with exercises aimed at teaching the topics to 
beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point 

of entry into the subject for readers from multiple communities such 
as engineering, mathematics, and computer science. A guide to the 
necessary background material is available in the appendix. 

This book can serve as a textbook for graduate-level courses 
presenting the basic mathematics behind convex algebraic geometry 
and semidefinite optimization. Readers conducting research in these 
areas will discover open problems and potential research directions. 

Grigoriy Blekherman is an assistant professor at Georgia Institute 
of Technology and a 2012 recipient of the Sloan Research Fellowship. 
His research interests lie at the intersection of convex and algebraic 
geometry.

Pablo A. Parrilo is a professor of Electrical Engineering and Computer 
Science at the Massachusetts Institute of Technology. He has received 
the SIAG/CST Prize and the IEEE Antonio Ruberti Young Researcher 
Prize. His research interests include mathematical optimization, 
systems and control theory, and computational methods for 
engineering applications.

Rekha R. Thomas is the Robert R. and Elaine F. Phelps Endowed 
Professor of Mathematics at the University of Washington in Seattle. 
Her research interests are in optimization and computational algebra.
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If you want to know more:

Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo

NSF FRG project “SDP and convex algebraic geometry” website
www.math.washington.edu/~thomas/frg/frg.html

(Helton/P./Nie/Sturmfels/Thomas), and new SIAM book!

Thanks for your attention!
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