
On the Complexity of Bandit and Derivative-Free
Stochastic Convex Optimization

Ohad Shamir

Microsoft Research

NIPS 2012 Optimization Workshop

Ohad Shamir Complexity of Bandit and Derivative-Free Optimization



Bandit / Derivative-Free Stochastic Convex Optimization

Setting

Convex domain W ⊆ Rd

Unknown convex function F :W 7→ R
Can get F (w)+noise at any w ∈ W
Want to optimize F with as few queries as possible

Information is zeroth-order: No direct access to gradients/Hessians
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Bandit / Derivative-Free Stochastic Convex Optimization

Optimization Community

Derivative-Free /
Zeroth-Order SCO

Black-box situations
where gradient is hard to
compute / unavailable

Goal: Minimize
optimization error

E [F (w̄T )− F (w∗)]

Online Learning Community

Bandit SCO

Sequential decision
making under
uncertainty (e.g.
multi-armed bandits)

Goal: Minimize regret

E

[
1

T

T∑
t=1

F (wt)− F (w∗)

]

Minimizing regret is harder than minimizing error
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Attainable Performance

What is the attainable error/regret in terms of

Number of queries T

Dimension d

With gradient information, situation is simple:

Error Regret

Function Type O Ω O Ω

Convex
√

1/T

Strongly Convex 1/T log(T )/T
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Attainable Performance

In Bandit/Derivative-free Setting: ???

Multi-armed bandits (Linear F , W is simplex): Θ(
√
d/T )

[Auer et al. 2002],[Audibert and Bubeck 2009]

Linear F , other convex domains:
O(
√

d/T ) or O(
√

d2/T ) bounds, depending on domain
[Abbasi-Yadkori et al. 2011],[Audbiert et al. 2011],[Bubeck et al. 2012]

General convex F :

O
((

d2/T
)1/4

)
[Flaxman et al. 2005]

O
(√

d34/T
)

[Agarwal et al. 2011]

Yudin and Nemirosvki 1979

...Each of the methods suggested is in some respect unimprovable,
but bad in other respects... We have not succeeded in combining
their good qualities and eliminating the bad. Whether it is possible
to do this... we do not know. The situation with a zeroth-order
oracle is far from clear.
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Our Results

We study the complexity of nonlinear bandit/derivative-free SCO -
particularly strongly convex functions

1st Main Result

For strongly-convex and smooth functions, attainable error/regret
is exactly Θ(

√
d2/T )

Follows from a new lower bound, which matches upper bound
in [Agarwal et al., 2010]

First tight complexity characterization for a general nonlinear
class

T must scale quadratically with the dimension d

Stronger lower bound for strongly convex and convex functions

Ohad Shamir Complexity of Bandit and Derivative-Free Optimization



Our Results

We study the complexity of nonlinear bandit/derivative-free SCO -
particularly strongly convex functions

1st Main Result

For strongly-convex and smooth functions, attainable error/regret
is exactly Θ(

√
d2/T )

Follows from a new lower bound, which matches upper bound
in [Agarwal et al., 2010]

First tight complexity characterization for a general nonlinear
class

T must scale quadratically with the dimension d

Stronger lower bound for strongly convex and convex functions

Ohad Shamir Complexity of Bandit and Derivative-Free Optimization



Our Results

2nd Main Result

In the special case of quadratic functions, attainable error is
exactly Θ(d2/T )

Improvable to O(d/T ) under additional assumptions

Demonstrates “fast rate” is possible for a general function
class, even without gradient knowledge

“Contradicts” Ω(
√
d/T ) lower bound presented at this NIPS

[Jamieson et al. 2012]

3rd Main Result

Even for quadratic functions, attainable regret is exactly
Θ(
√

d2/T )

Large gap between bandit and derivative-free SCO for
nonlinear F
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Our Results

Error Regret

Function Type O Ω O Ω

Quadratic d2

T

√
d2

T

St. Convex

+ Smooth

√
d2

T

Str. Convex min

{
3

√
d2

T ,
√

d34

T

} √
d2

T min

{
3

√
d2

T ,
√

d34

T

} √
d2

T

Convex min

{
4

√
d2

T ,
√

d34

T

} √
d2

T min

{
4

√
d2

T ,
√

d34

T

} √
d2

T
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Quadratic Functions: Upper Bounds

Special case of strongly-convex and smooth functions

F (w) = w>Aw + b>w + c

A is positive-definite (with minimal eigenvalue at least λ > 0)

Scaled so that ‖A‖ , ‖b‖ , |c | ≤ 1

Assumption: we can query in a ball of fixed radius ε around
optimum w∗
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Quadratic Functions: Upper Bounds

Theorem

If w∗ has constant norm, then

E [F (w̄T )− F (w∗)] ≤ O
(

1

ε2

d2

λT

)

Jamieson et al. (NIPS 2012) show Ω(
√
d/T ) lower bound for

such quadratic functions

However, their domain shrinks with T , implying ε→ 0, while
we assume ε is fixed
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Quadratic Functions: Upper Bounds

Algorithm

Input: λ, ε > 0
Initialize w1 = 0.
for t = 1, . . . ,T − 1 do

Pick r ∈ {−1,+1}d uniformly at random
Query noisy function value v at point wt + ε√

d
r

Let g̃ =
√
dv
ε r // unbiased estimate of ∇F (wt)

Let wt+1 = ΠW̄
(
wt − 1

λt g̃
)

end for
Return w̄T = 2

T

∑T
t=T/2 wt .

Key Obervation: For quadratic functions, 1-point Gradient
estimate is unbiased even if query far from wt
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Quadratic Functions: Upper Bounds

Aside: Result is improvable in some cases:

Theorem

Suppose F (w) = R(w) + E
[
w>Âw + b̂>w + ĉ

]
, where

R(w) is a known strongly convex function

Queries are based on noisy realizations of Â, b̂, ĉ , and can be
anywhere in Rd

Then ∃ algorithm such that E [F (w̄T )− F (w∗)] ≤ O
(

d E[‖Â‖2
F ]

λT

)

Example (Ridge Regression)

F (w) =
λ

2
‖w‖2 + E

[
(〈w, x〉 − y)2

]
Â = xx> ⇒ E

[
‖Â‖2

F

]
≤ O(1) ⇒ error O

(
d
λT

)
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Quadratic Functions: Lower Bounds

Theorem

∀ querying strategy, ∃ quadratic F (1-strongly convex, Lipschitz,
minimized within unit Euclidean ball) such that

E [F (w̄T )− F (w∗)] ≥ Ω

(
d2

T

)
Note: Result holds even if we can query anywhere in Rd (under
reasonable noise assumptions)
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Proof Idea

Adversary Strategy:

Pick e uniformly at random from Θ

(√
d
T

)
× {−1,+1}d

F (w) = 1
2 ‖w‖

2 − 〈e,w〉
Minimized at e

Given query point w, return F (w) + ξ

Proof idea:

Due to strong convexity, suboptimality reduced to a sum of d
hypothesis testing problems:

E [F (w̄T )− F (w∗)] ≥ E
[

1

2
‖w̄T − e‖2

]
≥ E

[
Θ

(
d

T

)
×

d∑
i=1

1w̄iei<0

]

Result derived from a relative-entropy argument

# samples needed to distinguish sign(ei )
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Quadratic Functions: Lower Bounds

Theorem

Under same conditions as above, ∀ querying strategy, ∃ quadratic

F such that E
[

1
T

∑T
t=1 F (wt)− F (w∗)

]
≥ Ω

(√
d2

T

)

Proof Idea

With more careful analysis, relative
entropy terms actually depend on
‖wt‖
For small regret, wt must be close
to optimum e

If ‖e‖ small ⇒ ‖wt‖ must be small
⇒ Larger lower bound 0
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Strongly Convex and Smooth Functions

Theorem

∀ querying strategy, ∃ strongly-convex and smooth F (minimized
within unit Euclidean ball) such that

E [F (w̄T )− F (w∗)] ≥ Ω

(√
d2

T

)
Key Proof Idea

F (w) = ‖w‖2 −
∑d

i=1
eiwi

1+(wi/ei )2

e again selected at random

F (w) ≈ ‖w‖2 − 0.9 〈e,w〉 near

optimum, but F (w) ≈ ‖w‖2

further away

⇒ Querying far from optimum
doesn’t give information on e

⇒ Same
√
d2/T lower bound as

for regret in quadratic case
0
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Summary

Studied the complexity of bandit and derivative-free stochastic
convex optimization

Exact characterization for strongly-convex and smooth
functions

Implies new lower bounds for more general settings
Quadratic dependence on the dimension is inevitable

“Fast” error rate achievable even without gradients, for
quadratic functions

Substantial gaps between optimization error and regret

Open questions: Complexity of strongly convex
(non-smooth) problems? General convex problems?

Huge gap: Ω(
√
d2/T ) vs. O

(
min

{√
d34

T ,
(

d2

T

)1/4
})

Conjecture: Θ
(√

d2/T
)

, but need new algorithms!
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