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Numerical Analysis is Inference . . .
being uncertain about deterministic problems

numerical problems: use evaluations of f to estimate
▸ Z = ∫ f(x) dx quadrature
▸ samples from p(x) = f(x)/Z Monte Carlo
▸ argminx f(x) optimization
▸ optimal trajectory under dynamics f(x, t, u) planning / control

f is deterministic for the user of the algorithm, but uncertain for the
designer of the algorithm.

▸ B. Ajne, T. Dalenius.
“Några tillämpningar av statistika ideer på numerisk integration”
Nordisk Math. Tidskrift, 1960

▸ P. Diaconis. “Bayesian Numerical Analysis”
Statistical Decision Theory and Related Topics, 1988

▸ D. Calvetti & Erkki Somersalo. “Introduction to Bayesian Scientific Computing”
Springer, 2007



Example: `2 optimal quadrature
over a Gaussian process prior [c.f. Minka, 2000]
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▸ say what functions you expect to need to integrate

▸ study how uncertainty drops from evaluation at x
▸ find x minimizing expected square error
▸ optimal location depends on # of evaluations (and kernel!)
▸ aka Bayesian Quadrature (see e.g. Osborne et al., NIPS 2012)
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. . . but Numerical Analysis is not Machine Learning
some observations

Probability Theory can help Numerics . . .
▸ understand implicit assumptions
▸ improve, generalise, invent new algorithms

. . . but Numerics has unique requirements
▸ computational cost
▸ robustness

let’s discuss what either field can give the other



Schedule
NIPS 2012 workshop on probabilistic numerics

07:45 Matthias Seeger PASCAL2 invited talk

08:15 Jacek Gondzio PASCAL2 invited talk

08:55 Coffee Break

09:30 David Duvenaud

10:00 Spotlights

10:10 Posters & Discussion

16:00 Persi Diaconis PASCAL2 invited talk

16:45 Ben Calderhead PASCAL2 invited talk

17:15 Coffee Break

18:00 Ulrich Paquet (canceled) ^ Philipp Hennig

18:30 Panel Discussion

19:00 End




