## What cannot be learned with belief propagation

Amir Globerson and Uri Heinemann (Hebrew Univ.)

## Multivariate Signals

- High dimensional signals are everywhere!
- Need a principled way for modeling
 distributions over those.








## Modeling Multivariate Distributions

- Goal: Model distributions over $x_{1}, \ldots, x_{n}$
- Problem: For large $n$, this requires an exponential number of parameters
- Approach: Model distribution as a product of "local" factors

$$
p\left(x_{1}, \ldots, x_{n}\right) \propto \prod \psi_{c}\left(x_{c}\right) \quad c \subset\{1, \ldots, n\}
$$

c
Example: $p\left(x_{1}, \ldots, x_{n}\right) \propto \psi\left(x_{1}, x_{2}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{2}, x_{6}, x_{8}\right) \ldots$

- Focus on pairwise factors


## Pairwise Graphical Models

- Consider graph $G=(V, E)$ with $n$ nodes
- Functions on E,V: $\theta_{i j}\left(x_{i}, x_{j}\right), \theta_{i}\left(x_{i}\right)$
- Defines a distribution over n variables

$$
p\left(x_{1}, \ldots, x_{n} ; \boldsymbol{\theta}\right)=\frac{1}{Z(\boldsymbol{\theta})} e^{\sum_{i j \in E} \theta_{i j}\left(x_{i}, x_{j}\right)+\sum_{i \in V} \theta_{i}\left(x_{i}\right)}
$$

## The Learning Problem

Data


## Approximate Learning

- Goal: Understand how well we can learn with approximate learning and inference?.
- Focus on approximation using loopy belief propagation
- Good approximation for marginals.
- Learning with it is poorly understood.


## Results

- BP has "spectacular failure modes" for learning.
- Characterize those.
- Well correlated with empirical behavior.
- Suggests which models to use when learning with BP.
- New insights on BP fixed points.


## Maximum Likelihood

- Given $M$ training instances: $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}$
- Each instance is an assignment to n variables:

$$
\boldsymbol{x}^{(i)}=\left[x_{1}^{(i)}, \ldots, x_{n}^{(i)}\right]
$$

- Find $\boldsymbol{\theta}$ that maximizes the likelihood:

$$
\ell(\boldsymbol{\theta})=\frac{1}{M} \sum_{m} \log p\left(x^{(m)} ; \boldsymbol{\theta}\right)
$$

## Maximum Likelihood

- Rewrite the likelihood in a simpler form.
- Define empirical

$$
\bar{\mu}_{i}\left(x_{i}\right)=\frac{1}{M} \sum_{m} \delta_{x_{i}^{(m)}, x_{i}}
$$ marginals:

- Then:

$$
\bar{\mu}_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{M} \sum_{m} \delta_{x_{i}^{(m)}, x_{i}} \delta_{x_{j}^{(m)}, x_{j}}
$$

$$
\ell(\boldsymbol{\theta})=\sum_{i j} \bar{\mu}_{i j}\left(x_{i}, x_{j}\right) \theta_{i j}\left(x_{i}, x_{j}\right)+\sum_{i} \bar{\mu}_{i}\left(x_{i}\right) \theta_{i}\left(x_{i}\right)-\log Z(\boldsymbol{\theta})
$$

- Or:


## Maximum Likelihood

- Rewrite the likelihood in a simpler form.
- Define empirical marginals:

$$
\begin{aligned}
& \bar{\mu}_{i}\left(x_{i}\right)=\frac{1}{M} \sum_{m} \delta_{x_{i}^{(m)}, x_{i}} \\
& \bar{\mu}_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{M} \sum_{m} \delta_{x_{i}^{(m)}, x_{i}} \delta_{x_{j}^{(m)}, x_{j}}
\end{aligned}
$$

- Then:
$\ell(\boldsymbol{\theta})=\sum_{i j} \bar{\mu}_{i j}\left(x_{i}, x_{j}\right) \theta_{i j}\left(x_{i}, x_{j}\right)+\sum_{i} \bar{\mu}_{i}\left(x_{i}\right) \theta_{i}\left(x_{i}\right)-\log Z(\boldsymbol{\theta})$
- Or:
$\ell(\boldsymbol{\theta})=\bar{\mu} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$


## Maximum Likelihood

- Goal is to maximize: $\ell(\boldsymbol{\theta})=\bar{\mu} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$
- Difficulty is to calculate the partition function and gradient (marginals).
- Say we can maximize it efficiently...
- The optimum parameter has a simple characterization: moment matching.


## Moment Matching



## Moment Matching



## Moment Matching

- Define the marginals for parameter $\boldsymbol{\theta}$ as:

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}^{\boldsymbol{\theta}}\left(x_{i}\right)=p\left(x_{i} ; \boldsymbol{\theta}\right) \\
& \boldsymbol{\mu}_{i j}^{\boldsymbol{\theta}}\left(x_{i}, x_{j}\right)=p\left(x_{i}, x_{j} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

- The maximum likelihood parameters satisfy:

$$
\boldsymbol{\mu}^{\boldsymbol{\theta}_{M L}}=\overline{\boldsymbol{\mu}}
$$

## Moment Matching

- Define the marginals for parameter $\boldsymbol{\theta}$ as:

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}^{\boldsymbol{\theta}}\left(x_{i}\right)=p\left(x_{i} ; \boldsymbol{\theta}\right) \\
& \boldsymbol{\mu}_{i j}^{\boldsymbol{\theta}}\left(x_{i}, x_{j}\right)=p\left(x_{i}, x_{j} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

- The maximum likelihood parameters satisfy:

$$
\boldsymbol{\mu}^{\boldsymbol{\theta}_{M L}}=\overline{\boldsymbol{\mu}} \quad \text { Moment Matching }
$$

## Moment Matching

- Define the marginals for parameter $\boldsymbol{\theta}$ as:

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}^{\boldsymbol{\theta}}\left(x_{i}\right)=p\left(x_{i} ; \boldsymbol{\theta}\right) \\
& \boldsymbol{\mu}_{i j}^{\boldsymbol{\theta}}\left(x_{i}, x_{j}\right)=p\left(x_{i}, x_{j} ; \boldsymbol{\theta}\right)
\end{aligned}
$$

- The maximum likelihood parameters satisfy:

$$
\boldsymbol{\mu}^{\boldsymbol{\theta}_{M L}}=\overline{\boldsymbol{\mu}} \quad \text { Moment Matching }
$$

- The marginals of the optimal model agree with the empirical ones!


## Moment Matching

Data


## Moment Matching

Data


## Moment Matching

- Makes sense. Means that the sufficient statistics of the model fit the empirical ones.
- If all we care about are these statistics, we don't really need to learn (e.g., Wainwright 06).
- Holds for exact learning.
- What happens if we approximate?
- For certain approximations (e.g., convex free energies) we get moment matching.
- What about Bethe/BP approaches?


## Approximate Learning

Data


## Approximate Learning

Data


## Approximate Learning

Data


## Approximate ML

- Recall the likelihood: $\ell(\boldsymbol{\theta})=\overline{\boldsymbol{\mu}} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$
- To maximize it we need to calculate:
- Objective. Requires: $\log Z(\boldsymbol{\theta})$
- Gradient. Requires:

$$
\frac{\partial \log Z(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\boldsymbol{\mu}^{\boldsymbol{\theta}}
$$

## Approximate ML

- Recall the likelihood: $\ell(\boldsymbol{\theta})=\overline{\boldsymbol{\mu}} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$
- To maximize it we need to calculate:
- Objective. Requires: $\log Z(\boldsymbol{\theta})$
- Gradient. Requires:

$$
\frac{\partial \log Z(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\boldsymbol{\mu}^{\boldsymbol{\theta}}
$$

## Approximate ML

- Recall the likelihood: $\ell(\boldsymbol{\theta})=\overline{\boldsymbol{\mu}} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$
- To maximize it we need to calculate:
- Objective. Requires: $\log Z(\boldsymbol{\theta})$
- Gradient. Requires:

$$
\frac{\partial \log Z(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\boldsymbol{\mu}^{\boldsymbol{\theta}} \text { Hard! }
$$

## Approximate ML

- Recall the likelihood: $\ell(\boldsymbol{\theta})=\overline{\boldsymbol{\mu}} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$
- To maximize it we need to calculate:
- Objective. Requires: $\log Z(\boldsymbol{\theta})$
- Gradient. Requires:

$$
\frac{\partial \log Z(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=\boldsymbol{\mu}^{\boldsymbol{\theta}} \text { Hard! }
$$

- Approximate both using a variational approach.


## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.


## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.
$\mu$


## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.



## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.



## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.



## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.


## $\log Z(\boldsymbol{\theta}) \left\lvert\, \begin{gathered}\boldsymbol{\mu} ; \boldsymbol{\theta}) \\ \boldsymbol{\mu}\end{gathered}\right.$

## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.


## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.



## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.



## Variational view of Z

- Both partition function and marginals can be cast as solutions to optimization problem.



## Bethe approximations

- Replace both constraints and objective with approximations.



## Bethe approximations

- Replace both constraints and objective with approximations.



## Bethe approximations

- Replace both constraints and objective with approximations.



## Bethe approximations

- Replace both constraints and objective with approximations.



## Bethe approximations

- Replace both constraints and objective with approximations.



## Bethe approximations

- Replace both constraints and objective with approximations.

$$
\begin{gathered}
\log Z_{B}(\boldsymbol{\theta}) \\
\mathcal{M}_{L} \\
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})=\boldsymbol{\mu} \cdot \boldsymbol{\theta}+H_{B}(\boldsymbol{\mu})
\end{gathered}
$$

## Bethe approximations

- Replace both constraints and objective with approximations.

$$
\begin{gathered}
\log Z_{B}(\boldsymbol{\theta}) \\
\mathcal{M}_{L} \\
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})=\boldsymbol{\mu} \cdot \boldsymbol{\theta}+H_{B}(\boldsymbol{\mu})
\end{gathered}
$$

## Bethe approximations

- Replace both constraints and objective with approximations.

$$
\begin{gathered}
\log Z_{B}(\boldsymbol{\theta}) \\
\mathcal{M}_{L} \\
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})=\boldsymbol{\mu} \cdot \boldsymbol{\theta}+H_{B}(\boldsymbol{\mu})
\end{gathered}
$$

## Bethe approximations



## Bethe approximations

$\log Z_{B}(\boldsymbol{\theta})$


- Local maxima of the approximation correspond to stable fixed points of loopy belief propagation (Yedidia Freeman and Weiss, Heskes).


## Loopy BP

- Protocol for passing messages along edges of the graph.



## Loopy BP

- Protocol for passing messages along edges of the graph.



## Loopy BP

- Protocol for passing messages along edges of the graph.



## Loopy BP

- Protocol for passing messages along edges of the graph.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$

- Returns marginals that are stationary points of the function $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ (typically maxima).


## Loopy BP

- Protocol for passing messages along edges of the graph.

- Returns marginals that are stationary points of the function $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ (typically maxima).


## Loopy BP

- Protocol for passing messages along edges of the graph.

- Returns marginals that are stationary points of the function $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ (typically maxima).


## Loopy BP

- Protocol for passing messages along edges of the graph.

- Returns marginals that are stationary points of the function $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ (typically maxima).


## Loopy BP

- Protocol for passing messages along edges of the graph.

- Returns marginals that are stationary points of the function $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ (typically maxima).


## Loopy BP

- Typically an effective approximation of the partition function and marginals.
- Exact for tree graphs.
- Works well in many cases.
- Caveat: can return local optima so hard to analyze.Assume for now we can find the global maximum.
- Lets use it in learning...


## Bethe ML

- Recall the likelihood: $\ell(\boldsymbol{\theta})=\overline{\boldsymbol{\mu}} \cdot \boldsymbol{\theta}-\log Z(\boldsymbol{\theta})$
- Approximate: $Z(\boldsymbol{\theta}) \approx Z_{B}(\boldsymbol{\theta})$

$$
\log Z_{B}(\boldsymbol{\theta})=\max _{\boldsymbol{\mu} \in \mathcal{M}_{L}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

- Maximize the Bethe likelihood:

$$
\begin{aligned}
& \quad \ell_{B}(\boldsymbol{\theta})=\overline{\boldsymbol{\mu}} \cdot \boldsymbol{\theta}-\max _{\boldsymbol{\mu} \in \mathcal{M}_{L}}\left[\boldsymbol{\mu} \cdot \boldsymbol{\theta}+H_{B}(\boldsymbol{\mu})\right] \\
& \\
& \text { - A concave function of } \boldsymbol{\theta}!
\end{aligned}
$$

## Bethe Inference

- Given a parameter vector $\boldsymbol{\theta}$, take its marginal to be the maximum of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$.
- Assume there are no issues with local optima.
- We will see that the serious problem is of non-unique maximizers.


## Approximate Learning

Data


## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\mu ; \theta)
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\overbrace{\underset{\mathcal{M}(\boldsymbol{\theta})}{F_{B}(\mu ; \theta)}}^{\overbrace{\downarrow \downarrow}}
$$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:


## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$

## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$



- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$

## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$



- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- Given parameter $\boldsymbol{\theta}$ define:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

$$
\mathcal{M}(\boldsymbol{\theta})=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$


$\mathcal{M}(\boldsymbol{\theta})$

- $\boldsymbol{\theta}$ maximizes Bethe likelihood if:

$$
\overline{\boldsymbol{\mu}} \in \operatorname{Conv}\{\mathcal{M}(\boldsymbol{\theta})\}
$$



## Optimality in Bethe ML

- If there is a $\boldsymbol{\theta}$ with single maximizer such that:

$$
\overline{\boldsymbol{\mu}}=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

- This will be a maximum Bethe likelihood optimum.
- The marginals are recoverable from the parameter.


## Optimality in Bethe ML

- If there is a $\boldsymbol{\theta}$ with single maximizer such that:

$$
\overline{\boldsymbol{\mu}}=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

- This will be a maximum Bethe likelihood optimum.
- The marginals are recoverable from the parameter. Moment Matching!


## Optimality in Bethe ML

- If there is a $\boldsymbol{\theta}$ with single maximizer such that:

$$
\overline{\boldsymbol{\mu}}=\arg \max _{\boldsymbol{\mu}} F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})
$$

- This will be a maximum Bethe likelihood optimum.
- The marginals are recoverable from the parameter. Moment Matching!
- What if there is no such parameter?


## A two maxima case

- Here is $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$ for a 2D case

- $\bar{\mu}$ is not a maximizer, but at a convex hull of maximizers.
- It cannot be
recovered from $\boldsymbol{\theta}(\overline{\boldsymbol{\mu}})$
- Non moment matching...


## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.


## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.



## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.



## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$


## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$



## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.



## $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$



## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$


Learnable!

## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$


Learnable!

## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$



## Bethe Learnable Marginals

- Definition:A marginal $\bar{\mu}$ is Bethe learnable if learning with Bethe achieves moment matching.

$F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$



## Bethe Learnable Marginals

- How do we characterize those?
- To check if $\bar{\mu}$ is learnable:
- Do Bethe ML. i.e., find $\theta(\overline{\boldsymbol{\mu}})$
- Check if $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))$ has a single maximum.
- We want something simpler.


## Canonical Parameters

- When the graph is a tree, Bethe is exact, and the following are the Bethe ML parameters:

$$
\begin{aligned}
\theta_{i}^{c}\left(x_{i} ; \bar{\mu}\right) & =\log \bar{\mu}_{i}\left(x_{i}\right) \\
\theta_{i j}^{c}\left(x_{i}, x_{j} ; \bar{\mu}\right) & =\log \frac{\bar{\mu}_{i j}\left(x_{i}, x_{j}\right)}{\bar{\mu}_{i}\left(x_{i}\right) \bar{\mu}_{j}\left(x_{j}\right)}
\end{aligned}
$$

- Generally $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$


## Canonical Parameters

- When the graph is a tree, Bethe is exact, and the following are the Bethe ML parameters:

$$
\begin{aligned}
\theta_{i}^{c}\left(x_{i} ; \bar{\mu}\right) & =\log \bar{\mu}_{i}\left(x_{i}\right) \\
\theta_{i j}^{c}\left(x_{i}, x_{j} ; \bar{\mu}\right) & =\log \frac{\bar{\mu}_{i j}\left(x_{i}, x_{j}\right)}{\bar{\mu}_{i}\left(x_{i}\right) \bar{\mu}_{j}\left(x_{j}\right)}
\end{aligned}
$$

- Generally $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$
$F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$


## Canonical Parameters

- When the graph is a tree, Bethe is exact, and the following are the Bethe ML parameters:

$$
\begin{aligned}
\theta_{i}^{c}\left(x_{i} ; \bar{\mu}\right) & =\log \bar{\mu}_{i}\left(x_{i}\right) \\
\theta_{i j}^{c}\left(x_{i}, x_{j} ; \bar{\mu}\right) & =\log \frac{\bar{\mu}_{i j}\left(x_{i}, x_{j}\right)}{\bar{\mu}_{i}\left(x_{i}\right) \bar{\mu}_{j}\left(x_{j}\right)}
\end{aligned}
$$

- Generally $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$

## Canonical Parameters

- When the graph is a tree, Bethe is exact, and the following are the Bethe ML parameters:

$$
\begin{aligned}
\theta_{i}^{c}\left(x_{i} ; \bar{\mu}\right) & =\log \bar{\mu}_{i}\left(x_{i}\right) \\
\theta_{i j}^{c}\left(x_{i}, x_{j} ; \bar{\mu}\right) & =\log \frac{\bar{\mu}_{i j}\left(x_{i}, x_{j}\right)}{\bar{\mu}_{i}\left(x_{i}\right) \bar{\mu}_{j}\left(x_{j}\right)}
\end{aligned}
$$

- Generally $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$



## Canonical Parameters

- When the graph is a tree, Bethe is exact, and the following are the Bethe ML parameters:

$$
\begin{aligned}
\theta_{i}^{c}\left(x_{i} ; \bar{\mu}\right) & =\log \bar{\mu}_{i}\left(x_{i}\right) \\
\theta_{i j}^{c}\left(x_{i}, x_{j} ; \bar{\mu}\right) & =\log \frac{\bar{\mu}_{i j}\left(x_{i}, x_{j}\right)}{\bar{\mu}_{i}\left(x_{i}\right) \bar{\mu}_{j}\left(x_{j}\right)}
\end{aligned}
$$

- Generally $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$
$F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$



## Stationary point invariance

- Say we have a non-canonical $\boldsymbol{\theta}$ s.t. $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$



## Stationary point invariance

- Say we have a non-canonical $\boldsymbol{\theta}$ s.t. $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$

- The function for the canonical parameter will be the same up to a constant.


## Stationary point invariance

- Say we have a non-canonical $\boldsymbol{\theta}$ s.t. $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$

- The function for the canonical parameter will be the same up to a constant.


## Stationary point invariance

- Say we have a non-canonical $\boldsymbol{\theta}$ s.t. $\overline{\boldsymbol{\mu}}$ is a stationary point of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$

- The function for the canonical parameter will be the same up to a constant.
- So, when looking for $\boldsymbol{\theta}$ s.t. $\overline{\boldsymbol{\mu}}$ is a single maximizer (learnable) it's enough to focus on canonical.


## Message I

## Use Canonical or don't use Anything!

## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$


## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$


## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$


## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$

$$
\mathcal{B}_{\mathcal{L}}
$$

## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$


## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$



## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$



## Outer Bound I

- Identifies cases where $\overline{\boldsymbol{\mu}} \notin \mathcal{B}_{\mathcal{L}}$
- Look at $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$



## Outer Bound I

- Identifies cases where $\overline{\boldsymbol{\mu}} \notin \mathcal{B}_{\mathcal{L}}$
- Look at $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$


$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$



## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$
- Look at $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$

- If $\bar{\mu}$ is not its global maximum, then $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$



## Outer Bound I

- Identifies cases where $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$
- Look at $F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$

- If $\bar{\mu}$ is not its global maximum, then $\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$


$\overline{\boldsymbol{\mu}} \notin \mathcal{B}_{\mathcal{L}}$

## Outer Bound I

## $F_{B}\left(\mu ; \theta^{c}(\bar{\mu})\right)$


$\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$

## Outer Bound I

$$
F_{B}\left(\mu ; \theta^{c}(\bar{\mu})\right)
$$


$\overline{\boldsymbol{\mu}} \notin \mathcal{B}_{\mathcal{L}}$

- How do you check it?


## Outer Bound I

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$


$\overline{\boldsymbol{\mu}} \notin \mathcal{B}_{\mathcal{L}}$

- How do you check it?
- Run BP several time to find other optima and compare their values.


## Outer Bound I

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$


$\overline{\boldsymbol{\mu}} \notin \mathcal{B}_{\mathcal{L}}$

- How do you check it?
- Run BP several time to find other optima and compare their values.


## Outer Bound I

$$
F_{B}\left(\mu ; \theta^{c}(\bar{\mu})\right)
$$


$\bar{\mu} \notin \mathcal{B}_{\mathcal{L}}$

- How do you check it?
- Run BP several time to find other optima and compare their values.


## Outer Bound I

$$
F_{B}\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)
$$



- How do you check it?
- Run BP several time to find other optima and compare their values.
- If we've discovered better maxima, then there is no chance that $\bar{\mu}$ is learnable...


## Outer Bound II

- Learnable marginals look like this:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))
$$



## Outer Bound II

- Learnable marginals look like this:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))
$$



- If $\overline{\boldsymbol{\mu}}$ is not a maximum (even local) of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ for any $\boldsymbol{\theta}$ then $\overline{\boldsymbol{\mu}}$ is not learnable.


## Outer Bound II

- Learnable marginals look like this:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))
$$



- If $\overline{\boldsymbol{\mu}}$ is not a maximum (even local) of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ for any $\boldsymbol{\theta}$ then $\overline{\boldsymbol{\mu}}$ is not learnable.
- Do such marginals ever exist?!


## Outer Bound II

- Learnable marginals look like this:

$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))
$$



- If $\overline{\boldsymbol{\mu}}$ is not a maximum (even local) of $F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta})$ for any $\boldsymbol{\theta}$ then $\overline{\boldsymbol{\mu}}$ is not learnable.
- Do such marginals ever exist?!
- Yes! Many


## Outer Bound II

- Consider marginals that are never local maxima of any Bethe free energy.
- They will also never be stable fixed points of BP (Heskes).
- Called unbelievable marginals in (Pitkow \& Miller, I2)


## Outer Bound II

- Consider marginals that are never local maxima of any Bethe free energy.
- They will also never be stable fixed points of BP (Heskes).
- Called unbelievable marginals in (Pitkow \& Miller, I2)



## Outer Bound II

- Consider marginals that are never local maxima of any Bethe free energy.
- They will also never be stable fixed points of BP (Heskes).
- Called unbelievable marginals in (Pitkow \& Miller, I2)
$\overline{\boldsymbol{\mu}}$ that are not maxima of anything.



## Outer Bound II

- Consider marginals that are never local maxima of any Bethe free energy.
- They will also never be stable fixed points of BP (Heskes).
- Called unbelievable marginals in (Pitkow \& Miller, I2)
$\overline{\boldsymbol{\mu}}$ that are not maxima of anything.

$\bar{\mu}$ that are
maxima but never global.


## Message II

## Some marginals cannot be BP stable fixed points!

## Outer Bound II

- How do you find marginals which can't maximize?
- Recall: $F(\boldsymbol{\mu} ; \boldsymbol{\theta})=\boldsymbol{\mu} \cdot \boldsymbol{\theta}+H_{B}(\boldsymbol{\mu})$
- Hessian does not depend on $\boldsymbol{\theta}$ (roughly...)
- We only need to consider Hessian of $H_{B}(\overline{\boldsymbol{\mu}})$
- If it has non-negative eigenvalues, $\overline{\boldsymbol{\mu}}$ cannot be a local maximizer.
- For binary variables this is easy to test.


## Homogenous Binary Case

- To get some intuition consider binary variables, and homogenous marginals:

$$
\begin{array}{ll}
\mu_{i}\left(x_{i}=1\right)=\mu_{v} & \forall i \\
\mu_{i j}\left(x_{i}=1, x_{j}=1\right)=\mu_{e} & \forall i j
\end{array}
$$

- Find a lower bound on the maximum eigenvalue of the Hessian, and check when it is non-negative.
- Closely related to the spectrum of the graph.


## Homogenous Binary Case

- Following marginals are un-learnable:

$$
\bar{\mu}_{e}>\frac{\left(1-\frac{V}{E}\right) \bar{\mu}_{v}^{2}+\frac{V}{2 E} \bar{\mu}_{v}}{1-\frac{V}{2 E}}
$$

- For complete graphs with infinite $V$ this is:

$$
\bar{\mu}_{e}>\bar{\mu}_{v}^{2}
$$

- All attractive Ising models are in this set!


## Inner Bounds



## Inner Bounds



## Inner Bounds



## Inner Bounds



## Inner Bounds

## Inner Bounds



- How can we guarantee that $\overline{\boldsymbol{\mu}}$ is learnable?


## Inner Bounds



- How can we guarantee that $\overline{\boldsymbol{\mu}}$ is learnable?
- We know that it is a local optimum of the function $F\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$.When is it global?


## Inner Bounds



- How can we guarantee that $\bar{\mu}$ is learnable?
- We know that it is a local optimum of the function $F\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$.When is it global?


## Inner Bounds



- How can we guarantee that $\bar{\mu}$ is learnable?
- We know that it is a local optimum of the function $F\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$.When is it global?
- If this function has a unique maximum point, then we have that $\bar{\mu}$ is the global optimum!


## Inner Bounds



- How can we guarantee that $\overline{\boldsymbol{\mu}}$ is learnable?
- We know that it is a local optimum of the function $F\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$.When is it global?
- If this function has a unique maximum point, then we have that $\bar{\mu}$ is the global optimum!


## Inner Bounds



- How can we guarantee that $\overline{\boldsymbol{\mu}}$ is learnable?
- We know that it is a local optimum of the function $F\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$. When is it global?
- If this function has a unique maximum point, then we have that $\bar{\mu}$ is the global optimum!


## Inner Bounds



- How can we guarantee that $\overline{\boldsymbol{\mu}}$ is learnable?
- We know that it is a local optimum of the function $F\left(\boldsymbol{\mu} ; \boldsymbol{\theta}^{c}(\overline{\boldsymbol{\mu}})\right)$.When is it global?
- If this function has a unique maximum point, then we have that $\bar{\mu}$ is the global optimum!
- Multiple works on characterizing when BP has unique fixed points (Mooij, Kappen 07; Roosta et al. 08).


## Experiments

- Focus on binary variables for ease of presentation.
- For homogenous case each marginal is characterized in 2D (depicting $\mu_{v}, \mu_{e}$ ).
- We also test empirically whether moment matching can be achieved (using gradient descent).


## Experiments

- What happens for unlearnable marginals?


$$
F_{B}(\boldsymbol{\mu} ; \boldsymbol{\theta}(\overline{\boldsymbol{\mu}}))
$$

- $\bar{\mu}$ is not a maximizer, but at a convex hull of maximizers.


## $3 \times 3$ Grid



## $3 \times 3$ Grid



Outer bound is tight!

## Bipartite $8 \times 8$

- Largely unlearnable
- Bad news for restricted Boltzmann Machines...



## Learnability and Performance

- How well does BP perform in the learnable region?
- Test on new marginals (not those in $\overline{\boldsymbol{\mu}}$ ).
- Use Ising grid graphs. Sample models with varying field and interaction strengths.
- Compare to TRW (Wainwright et al.)


## Learnability and Performance



Interaction

## Learnability and Performance



## Learnability and Performance



## Learnability and Performance



- Learnability is well correlated with performance!


## Take Home Messages

- Some marginals cannot be obtained with BP!
- These can be analytically characterized.
- Learning with BP will "often" not even achieve moment matching.
- Cannot recover marginals of the data.
- No reason to use BP in these cases.
- For learnable marginals BP performs well.


## Future Work

- Tighter characterization
- Use BP on models where it works.
- Workarounds: Maybe ML is not the right criterion. Try to match moment directly.
- Use higher order approximations (Kikuchi). Could improve learnability (provably does it for sufficiently tight approximations).

