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Multivariate Signals
High dimensional 
signals are 
everywhere!

Need a principled way 
for modeling 
distributions over 
those.
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Modeling Multivariate Distributions

Goal: Model distributions over

Problem: For large n, this requires an 
exponential number of parameters

Approach: Model distribution as a product of 
“local” factors

x1, . . . , xn

c � {1, ..., n}p(x1, . . . , xn) �
�

c

�c(xc)

Focus on pairwise factors

p(x1, . . . , xn) � �(x1, x2, x3)�(x2, x4)�(x2, x6, x8) . . .Example:
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Pairwise Graphical Models

Consider graph G=(V,E) with n nodes

Functions on E,V:

Defines a distribution over n variables

✓ij(xi, xj), ✓i(xi)

p(x1, . . . , xn

;✓) =
1

Z(✓)
e

P
ij2E ✓ij(xi,xj)+

P
i2V ✓i(xi)
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The Learning Problem
Data

Model 
Dist.

Answers

learning

Real 
Dist.

Inference

Answers

Inference

p(xi) =?
Query

Saturday, December 8, 12



The Learning Problem
Data

Model 
Dist.

Answers

learning

Real 
Dist.

Inference

Answers

Inference

Should be similar

p(xi) =?
Query

Saturday, December 8, 12



The Learning Problem
Data

Model 
Dist.

Answers

learning

Real 
Dist.

Inference

Answers

Inference

Hard

Should be similar

p(xi) =?
Query

Saturday, December 8, 12



The Learning Problem
Data

Model 
Dist.

Answers

learning

Real 
Dist.

Inference

Answers

Inference

Hard

Hard

Should be similar

p(xi) =?
Query

Saturday, December 8, 12



The Learning Problem
Data

Model 
Dist.

Answers

learning

Real 
Dist.

Inference

Answers

Inference

Hard

Hard

Should be similar

p(xi) =?
Query

Approximate!
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Approximate Learning
Goal: Understand how well we can learn 
with approximate learning and inference?.

Focus on approximation using loopy belief 
propagation

Good approximation for marginals.

Learning with it is poorly understood.
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Results
BP has “spectacular failure modes” for 
learning.

Characterize those.

Well correlated with empirical behavior.

Suggests which models to use when learning 
with BP.

New insights on BP fixed points.
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Maximum Likelihood
Given M training instances:

Each instance is an assignment to n variables:

x

(1), . . . ,x(M)

x

(i) =
h
x

(i)
1 , . . . , x

(i)
n

i

Find     that maximizes the likelihood: ✓

`(✓) =

1

M

X

m

log p(x

(m)
;✓)
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Maximum Likelihood
Rewrite the likelihood in a simpler form.

`(✓) =

X

ij

µ̄ij(xi, xj)✓ij(xi, xj) +

X

i

µ̄i(xi)✓i(xi)� log Z(✓)

Then:

Or:

µ̄

i

(x
i

) =
1
M

X

m

�

x

(m)
i ,xi

µ̄

ij

(x
i

, x

j

) =
1
M

X

m

�

x

(m)
i ,xi

�

x

(m)
j ,xj

Define empirical 
marginals:
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Maximum Likelihood
Rewrite the likelihood in a simpler form.

`(✓) =

X

ij

µ̄ij(xi, xj)✓ij(xi, xj) +

X

i

µ̄i(xi)✓i(xi)� log Z(✓)

Then:

`(✓) = µ̄ · ✓ � log Z(✓)Or:

µ̄

i

(x
i

) =
1
M

X

m

�

x

(m)
i ,xi

µ̄

ij

(x
i

, x

j

) =
1
M

X

m

�

x

(m)
i ,xi

�

x

(m)
j ,xj

Define empirical 
marginals:
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Maximum Likelihood

Goal is to maximize:

Difficulty is to calculate the partition 
function and gradient (marginals).

Say we can maximize it efficiently...

The optimum parameter has a simple 
characterization: moment matching.

`(✓) = µ̄ · ✓ � log Z(✓)
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Moment Matching
Data

Model 
Dist.

Marginals

Max Lik.

Real 
Dist.

Exact Inf.

Marginals
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Moment Matching

Define the marginals for parameter     as:  ✓

The maximum likelihood parameters satisfy:

µ✓
i (xi) = p(xi;✓)

µ✓
ij(xi, xj) = p(xi, xj ;✓)

µ✓ML = µ̄
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Moment Matching

Define the marginals for parameter     as:  ✓

The maximum likelihood parameters satisfy:

µ✓
i (xi) = p(xi;✓)

µ✓
ij(xi, xj) = p(xi, xj ;✓)

Moment Matchingµ✓ML = µ̄
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Moment Matching

Define the marginals for parameter     as:  ✓

The maximum likelihood parameters satisfy:

µ✓
i (xi) = p(xi;✓)

µ✓
ij(xi, xj) = p(xi, xj ;✓)

Moment Matching

The marginals of the optimal model agree 
with the empirical ones!

µ✓ML = µ̄
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Moment Matching
Data
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Dist.

Marginals

Max Lik.
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Dist.

Exact Inf.

Marginals

✓ML(µ̄)

µ✓ML(µ̄)µ̄
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Moment Matching
Data

Model 
Dist.

Marginals

Max Lik.

Real 
Dist.

Exact Inf.

Marginals =

✓ML(µ̄)

µ✓ML(µ̄)µ̄
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Moment Matching
Makes sense. Means that the sufficient 
statistics of the model fit the empirical ones.

If all we care about are these statistics, we 
don’t really need to learn (e.g., Wainwright 06).

Holds for exact learning. 

What happens if we approximate?

For certain approximations (e.g., convex free 
energies) we get moment matching.

What about Bethe/BP approaches? 
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Approximate Learning
Data

Model 
Dist.

Marginals

App.
Learn

Real 
Dist.

A
pp. Inf.

Marginals

µ̄

✓(µ̄)
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Approximate Learning
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Marginals

App.
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Real 
Dist.

A
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Approximate ML
Recall the likelihood: `(✓) = µ̄ · ✓ � log Z(✓)

To maximize it we need to calculate:

Objective. Requires:

Gradient. Requires: @ log Z(✓)

@✓
= µ✓

log Z(✓)
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Approximate ML
Recall the likelihood: `(✓) = µ̄ · ✓ � log Z(✓)

Hard!

To maximize it we need to calculate:

Objective. Requires:

Gradient. Requires: @ log Z(✓)

@✓
= µ✓

log Z(✓)

Hard!

Approximate both using a variational approach.
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Variational view of Z
Both partition function and marginals can be 
cast as solutions to optimization problem.
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Variational view of Z
Both partition function and marginals can be 
cast as solutions to optimization problem.

F (µ;✓)log Z(✓)

µ✓ µ
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Variational view of Z
Both partition function and marginals can be 
cast as solutions to optimization problem.

F (µ;✓)log Z(✓)

µ✓ µ

Hard!

F (µ;✓) = µ · ✓ + H(µ)

Unique 
Maximizer!
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Bethe approximations

Replace both constraints and objective with 
approximations.

F (µ;✓)

µ
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Bethe approximations
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Bethe approximations

F (µ;✓)

µ

FB(µ;✓)

log ZB(✓)

µ✓
B

ML
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Bethe approximations

Local maxima of the approximation 
correspond to stable fixed points of loopy 
belief propagation (Yedidia Freeman and 
Weiss, Heskes).

F (µ;✓)

µ

FB(µ;✓)

log ZB(✓)

µ✓
B

ML
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Loopy BP
Protocol for passing messages along edges of 
the graph.

xixj
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Loopy BP
Protocol for passing messages along edges of 
the graph.

xixj

mij(xj)
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Loopy BP
Protocol for passing messages along edges of 
the graph.

xixj

mij(xj)

µ

FB(µ;✓)

Returns marginals that are stationary points of 
the function                 (typically maxima). FB(µ;✓)
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Loopy BP
Protocol for passing messages along edges of 
the graph.

xixj
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µ

FB(µ;✓)
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Loopy BP
Protocol for passing messages along edges of 
the graph.

xixj

mij(xj)

µ

FB(µ;✓)

Returns marginals that are stationary points of 
the function                 (typically maxima). FB(µ;✓)

µ µµ

Unstable
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Loopy BP
Typically an effective approximation of the 
partition function and marginals.

Exact for tree graphs.

Works well in many cases.

Caveat: can return local optima so hard to 
analyze. Assume for now we can find the 
global maximum.

Lets use it in learning...
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Bethe ML
Recall the likelihood: `(✓) = µ̄ · ✓ � log Z(✓)

Approximate: Z(✓) ⇡ ZB(✓)

log ZB(✓) = max

µ2ML

FB(µ;✓)

FB(µ;✓)

ML

`B(✓) = µ̄ · ✓ � max

µ2ML

[µ · ✓ + HB(µ)]

Maximize the Bethe likelihood:

A concave function of     ! ✓ ✓

`B(✓)
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Bethe Inference
Given a parameter vector   , 
take its marginal to be the 
maximum of                .

Assume there are no issues 
with local optima.

We will see that the serious 
problem is of non-unique 
maximizers.

FB(µ;✓)

µ

✓

FB(µ;✓)
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Approximate Learning
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Approximate Learning
Data

Model 
Dist.

Marginals
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Real 
Dist.
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µ̄
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µ
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Optimality in Bethe ML
Given parameter    define: ✓ FB(µ;✓)

M(✓) = arg max

µ
FB(µ;✓)
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Optimality in Bethe ML
Given parameter    define: ✓ FB(µ;✓)

M(✓)
   maximizes Bethe likelihood if: ✓

M(✓) = arg max

µ
FB(µ;✓)
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Optimality in Bethe ML
Given parameter    define: ✓ FB(µ;✓)

M(✓)
   maximizes Bethe likelihood if: ✓

µ̄ 2 Conv {M(✓)}

M(✓) = arg max

µ
FB(µ;✓)
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Optimality in Bethe ML
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Optimality in Bethe ML
Given parameter    define: ✓ FB(µ;✓)

M(✓)
   maximizes Bethe likelihood if: ✓

µ̄ 2 Conv {M(✓)}

M(✓) = arg max

µ
FB(µ;✓)

µ̄
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Optimality in Bethe ML
If  there is  a     with single maximizer such that:

µ̄ = arg max

µ
FB(µ;✓)

µ̄

✓

This will be a maximum Bethe likelihood optimum.

The marginals are recoverable from the parameter.
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Optimality in Bethe ML
If  there is  a     with single maximizer such that:

µ̄ = arg max

µ
FB(µ;✓)

µ̄

✓

This will be a maximum Bethe likelihood optimum.

The marginals are recoverable from the parameter.
Moment Matching!
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Optimality in Bethe ML
If  there is  a     with single maximizer such that:

µ̄ = arg max

µ
FB(µ;✓)

µ̄

✓

This will be a maximum Bethe likelihood optimum.

The marginals are recoverable from the parameter.

What if there is no such parameter?

Moment Matching!
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A two maxima case
Here is                        for a 2D case

µe

µ v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bethe maximizers

Empirical marginals

FB(µ;✓(µ̄))

µ̄

   is not a maximizer, 
but at a convex hull of 
maximizers.

It cannot be 
recovered from 

Non moment 
matching...

µ̄

✓(µ̄)
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄
µ̄

space
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Bethe learnable if learning 
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄

FB(µ;✓(µ̄))

BL
µ̄

space
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
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µ̄
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄

FB(µ;✓(µ̄))
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µ̄

space

µ̄
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄

FB(µ;✓(µ̄)) Learnable!

BL
µ̄

space

µ̄
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄

FB(µ;✓(µ̄)) Learnable!

BL
µ̄

space

µ̄

µ̄
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄

FB(µ;✓(µ̄)) Learnable!

BL
µ̄

space

µ̄

µ̄
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Bethe Learnable Marginals

Definition: A marginal     is 
Bethe learnable if learning 
with Bethe achieves 
moment matching.

µ̄

FB(µ;✓(µ̄)) Learnable!

Unlearnable!

BL
µ̄

space

µ̄

µ̄
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Bethe Learnable Marginals

How do we characterize those?

To check if      is learnable:

Do Bethe ML. i.e., find

Check if                            has a single maximum.

We want something simpler.

µ̄

✓(µ̄)
FB(µ;✓(µ̄))
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Canonical Parameters
When the graph is a tree, Bethe is exact, and 
the following are the Bethe ML parameters: 

✓

c
i (xi; µ̄) = log µ̄i(xi)

✓

c
ij(xi, xj ; µ̄) = log

µ̄ij(xi, xj)

µ̄i(xi)µ̄j(xj)

µ̄Generally     is a stationary point of  FB(µ;✓c(µ̄))
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Stationary point invariance

Say we have a non-canonical    s.t.     is a 
stationary point of 

✓ µ̄
FB(µ;✓)
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be the same up to a constant.
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Stationary point invariance

Say we have a non-canonical    s.t.     is a 
stationary point of 

✓ µ̄
FB(µ;✓)

µ̄

FB(µ;✓)

The function for the canonical parameter will 
be the same up to a constant.

µ̄

FB(µ;✓c(µ̄))

So, when looking for     s.t.     is a single 
maximizer (learnable) it’s enough to focus on 
canonical.

✓ µ̄
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Message I

Use Canonical or don’t use 
Anything!
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Outer Bound I

Identifies cases where µ̄ /2 BL
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Outer Bound I

BL

µ̄

FB(µ;✓c(µ̄))

Look at FB(µ;✓c(µ̄))

If      is not its global maximum, then µ̄ /2 BLµ̄

Identifies cases where µ̄ /2 BL

µ̄ /2 BL
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Outer Bound I

µ̄

FB(µ;✓c(µ̄)) µ̄ /2 BL
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Outer Bound I

µ̄

FB(µ;✓c(µ̄))

How do you check it?

µ̄ /2 BL
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Outer Bound I
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FB(µ;✓c(µ̄))

How do you check it?

µ̄ /2 BL

Run BP several time to find other optima and 
compare their values.
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Outer Bound I
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Outer Bound I

µ̄

FB(µ;✓c(µ̄))

How do you check it?

µ̄ /2 BL

Run BP several time to find other optima and 
compare their values.

If we’ve discovered better maxima, then there 
is no chance that     is learnable...µ̄
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Outer Bound II
Learnable marginals look like this:

FB(µ;✓(µ̄))
µ̄
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Outer Bound II

If     is not a maximum (even local) of               for 
any     then     is not learnable.

µ̄
✓ µ̄

Learnable marginals look like this:

FB(µ;✓(µ̄))
µ̄

FB(µ;✓)
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Outer Bound II

If     is not a maximum (even local) of               for 
any     then     is not learnable.

Do such marginals ever exist?!

µ̄
✓ µ̄

Learnable marginals look like this:

FB(µ;✓(µ̄))
µ̄

FB(µ;✓)
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Outer Bound II

If     is not a maximum (even local) of               for 
any     then     is not learnable.

Do such marginals ever exist?!

Yes! Many

µ̄
✓ µ̄

Learnable marginals look like this:

FB(µ;✓(µ̄))
µ̄

FB(µ;✓)

Saturday, December 8, 12



Outer Bound II

Called unbelievable marginals in (Pitkow & Miller,12)

Consider marginals that are never local maxima of 
any Bethe free energy.

They will also never be stable fixed points of BP 
(Heskes).
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Outer Bound II

Called unbelievable marginals in (Pitkow & Miller,12)

Consider marginals that are never local maxima of 
any Bethe free energy.

They will also never be stable fixed points of BP 
(Heskes).

BL
    that are not 
maxima of 
anything.

µ̄     that are 
maxima but 
never global.

µ̄
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Message II

Some marginals cannot be BP 
stable fixed points!
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Outer Bound II

Recall:

Hessian does not depend on     (roughly...)

We only need to consider Hessian of 

If it has non-negative eigenvalues,     cannot be a 
local maximizer.

For binary variables this is easy to test.   

F (µ;✓) = µ · ✓ + HB(µ)
✓

HB(µ̄)
µ̄

How do you find marginals which can’t maximize?
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Homogenous Binary Case

To get some intuition consider binary 
variables, and homogenous marginals:

µi(xi = 1) = µv

µij(xi = 1, xj = 1) = µe

8i

8ij

Find a lower bound on the maximum 
eigenvalue of the Hessian, and check when it 
is non-negative.

Closely related to the spectrum of the graph.
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Homogenous Binary Case

Following marginals are un-learnable:

µ̄e >
(1� V

E )µ̄2
v + V

2E µ̄v

1� V
2E

For complete graphs with infinite V this is:

µ̄e > µ̄2
v

All attractive Ising models are in this set!
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Inner Bounds
BL
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Inner Bounds

How can we guarantee that     is learnable?µ̄

BL
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How can we guarantee that     is learnable?

We know that it is a local optimum of the 
function                   . When is it global?

µ̄
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Inner Bounds

How can we guarantee that     is learnable?

We know that it is a local optimum of the 
function                   . When is it global?

If this function has a unique maximum point, then 
we have that    is the global optimum!

µ̄

F (µ;✓c(µ̄))

µ̄

BL µ̄   s.t.                 
has single global 
maximum 

F (µ;✓c(µ̄))

µ̄

µ̄
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Inner Bounds

How can we guarantee that     is learnable?

We know that it is a local optimum of the 
function                   . When is it global?

If this function has a unique maximum point, then 
we have that    is the global optimum!

Multiple works on characterizing when BP has 
unique fixed points (Mooij, Kappen 07; Roosta et al. 08). 

µ̄

F (µ;✓c(µ̄))

µ̄

BL µ̄   s.t.                 
has single global 
maximum 

F (µ;✓c(µ̄))

µ̄

µ̄
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Experiments
Focus on binary variables for ease of 
presentation.

For homogenous case each marginal is 
characterized in 2D (depicting           ).

We also test empirically whether moment 
matching can be achieved (using gradient 
descent).

µv, µe
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Experiments
What happens for unlearnable marginals?

µe

µ v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bethe maximizers

Empirical marginals

FB(µ;✓(µ̄))

µ̄

   is not a maximizer, 
but at a convex hull of 
maximizers.

µ̄
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3x3 Grid
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Outer 
bound is 

tight!
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Bipartite 8x8
Largely 
unlearnable

Bad news for 
restricted 
Boltzmann 
Machines...

µe

µ v
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Learnability and Performance

How well does BP perform in the learnable region?

Test on new marginals (not those in    ).

Use Ising grid graphs. Sample models with varying 
field and interaction strengths.

Compare to TRW (Wainwright et al.)

µ̄

Saturday, December 8, 12



Learnability and Performance
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Learnability and Performance
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Learnability and Performance

Θe

Θ
v

 

 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

BP

Interaction

Fi
el

d

Low Error

Θe

Θ
v

 

 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

TRW

Interaction

Fi
el

d
Θe

Θ
v

 

 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

0

1

2

3

4

5

6

7

8

9

10

Fi
el

d

Num. Learnable

All 
learnable

Interaction

Learnability is well correlated with performance!
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Take Home Messages
Some marginals cannot be obtained with BP!

These can be analytically characterized. 

Learning with BP will “often” not even 
achieve moment matching.

Cannot recover marginals of the data.

No reason to use BP in these cases.

For learnable marginals BP performs well.
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Future Work
Tighter characterization

Use BP on models where it works.

Workarounds: Maybe ML is not the right 
criterion. Try to match moment directly.

Use higher order approximations (Kikuchi). 
Could improve learnability (provably does it 
for sufficiently tight approximations).
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