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1st-order Methods for Optimization

The 1st-order methods are applied to unconstrained
optimization

min f(x) +Ψ(x)
s.t. x ∈ X,

where f and Ψ are convex functions
(may be smooth, separable, strongly convex)
and X is an easy set (Rn, box, hyperplane, etc)

The 1st-order methods rely on gradients
(or sub-gradients) of f and Ψ.

Randomization often helps.
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Interior Point Methods (IPMs)
IPMs are applied to constrained optimization

min f(x)
s.t. g(x) ≤ 0,

h(x) = 0,

where f, g and h are convex functions.
IPMs easily deal with the inequalities:

LO/QO x ≥ 0, x ∈ Rn

NLO g(x) ≤ 0, g : Rn 7→ Rm

SOCO x ∈ K = K1 ×K2 × · · · ×Kk (cones)
SDO X � 0, X ∈ SRn×n

IPMs rely on the 2nd-order information of f, g and h.
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Observation

• First-order methods

– complexity O(1/ε) or O(1/ε2)
– produce a rough approx. of solution quickly
– but ... struggle to converge to high accuracy

• IPMs are second-order methods
(they apply Newton method to barrier subprobs)

– complexity O(log(1/ε))
– produce accurate solution in a few iterations
– but ... one iteration may be expensive
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Just think

For example, ε = 10−3 gives

1/ε = 103 and 1/ε2 = 106, but log(1/ε) ≈ 7.

For example, ε = 10−6 gives

1/ε = 106 and 1/ε2 = 1012, but log(1/ε) ≈ 14.

But ML Community loves the 1st-order methods.

Stirring up a hornets nest:

Please give IPMs a serious consideration!
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Interior Point Methods
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LO & QO Problems

min cTx+ 1
2 x

TQx

s.t. Ax = b,

x ≥ 0,

where A ∈ Rm×n has full row rank

and Q ∈ Rn×n is symmetric positive semidefinite.

m and n may be large.

Assumption: A and Q are “operators” A ·u, AT·v, Q ·u

Expectation: Low complexity of these operations
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Interior-Point Framework

The log barrier − log xj
“replaces” the inequality xj ≥ 0. x

−ln x

1

We derive the first order optimality conditions for
the primal barrier problem:

Ax = b,

−Qx+ ATy+ s = c,
XSe = µe,

and apply Newton method to solve this system of
(nonlinear) equations.
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The First Order Optimality Conditions

Ax = b,

−Qx+ ATy+ s = c,
XSe = µe,

(x, s) > 0.

Assume primal-dual feasibility:

Ax = b and −Qx+ ATy+ s = c

Apply Newton Method to the FOC





A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





b− Ax

c− ATy − s+Qx
σµe−XSe



 =





0
0
ξ



 .
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Central Path:

A set of all solutions to the optimality conds for µ > 0.

Ax = b,

−Qx+ ATy+ s = c,
XSe = µe.

2
θN  (   ) neighbourhoodof the central path
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Path Following Method:

Stay in the neighbourhood (of the central path)

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}
NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}

where

F0 := {(x, y, s) : c− ATy − s+Qx = 0, Ax = b, x, s > 0}.
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Standard complexity result

Theorem (Wright, Thm 5.12).

Let ǫ > 0 be the required accuracy of the optimal solution.
The (short-step, feasible) interior point method finds the
ǫ-accurate solution such that

µk ≤ ǫ

after at most

K = O(√n log(1/ǫ))

iterations.
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Standard IPMs for LO/QO

We know that IPMs converge in

• theory: O(√n log(1/ε)) iterations

• practice: O(log n log(1/ε)) iterations

But the per-iteration cost may be high

• practice: between O(n2) and O(n3)
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Objective: Accelerate IPMs for LO/QO

• Find an ǫ-accurate solution in

O(log n log(1/ǫ))

iterations (in practice).

• Lower the cost of a single IPM iteration

from O(n3) to O(n).
Realistically: make only a few matrix-vector prods.

Use Inexact Newton Method
Dembo, Eisenstat & Steihaug,
SIAM J. on Num Analysis 19 (1982) 400–408.
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Exact Newton Method




A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





0
0
ξ



 .

Inexact Newton Method




A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





0
0

ξ + r





allows for an error in the (linearized) complementarity
condition only.
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General Assumption

The residual r in the inexact Newton Method satisfies:

‖r‖ ≤ δ‖ξ‖,

where δ ∈ (0,1].

What is an acceptable δ ?

What happens to the complexity result?
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Short-step (Feasible) Algorithm

Stay in the small neighbourhood of the central path

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}.

Use inexact Newton Method with the relative error

‖r‖ ≤ δ‖ξ‖.

Aspire to reduce duality gap:

µ̄ = (1−0.1√
n
)µ

and achieve the reduction:

µ̄ ≤ (1−0.002√
n
)µ.
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Theorem

Suppose the algorithm operates in N2(θ) neighbourhood

of the central path and uses an inexact Newton Method

with the relative precision δ = 0.3.

Then it converges in at most

K = O(√n log(1/ǫ))

iterations.

G., Convergence Analysis of an Inexact Feasible IPM for
Convex QP, Tech Rep ERGO-2012-008, July 2012.
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Proof (key ideas)

Control the error in Newton Method, namely, the terms
∆xT∆s and ‖∆X∆Se‖.
Show that if the inexactness in the Newton Method is
limited then the error satisfies

‖∆X∆Se‖ = O(µ).
Use the full Newton step to achieve a sizeable reduction
of duality gap in one step.
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Conclusion

Replace the Exact Newton Method

with the Inexact Newton Method

Allow for large residual

‖r‖ ≤ δ‖ξ‖

The worst-case complexity result
remains the same!
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Observation

We have not made any assumption regarding the source
of inexactness.

Possible sources of inexactness

• approximate Hessian Q and/or Jacobian A;

• iterative method to compute Newton direction;

• probabilistic approach?
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From Theory to Practice

• Compressed Sensing
with K. Fountoulakis and P. Zhlobich

• Google Problem
with K. Woodsend

both exploit/rely on probabilistic arguments.
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Sparse Approximations joint work with

Kimon Fountoulakis and Pavel Zhlobich

• Statistics: Estimate x from observations

• Wavelet-based signal/image reconstr./restoration

• Compressed Sensing (Signal Processing)

Re-cast as large dense quadratic optimization problem:

min
x

1
2
‖Ax− b‖22+ τ‖x‖1,

where A ∈ Rm×n.

The ML Community likes this problem very much.
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Bayesian Statistics Viewpoint

Estimate x from observations

b = Ax+ e,

where b are observations and e is the Gaussian noise.

→ minx ‖Ax− b‖22

If the prior on x is Laplacian (log p(x) = −λ‖x‖1+K) then

min
x

‖Ax− b‖22+ τ‖x‖1

Tibshirani, J. of Royal Stat Soc B 58 (1996) 267-288.
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Wavelet-based Signal/Image Reconstruction

A has the form A = RW , where

• R is the observation operator (think: tomographic
projection)
R is a matrix representation of this operator

• W is a wavelet basis or a redundant dictionary
operation Wx corresponds to performing an inverse
wavelet transform

• x is the vector representation coefficients of the un-
known signal/image

Chen, Donoho & Saunders,
SIAM J. on Sci Comp 20 (1998) 33-61.
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Compressed Sensing

Relatively small number of random projections
of a sparse signal can contain most of its salient
information.

If a signal is sparse (or approximately sparse) in some or-
thonormal basis, then an accurate reconstruction can be
obtained from random projections of the original signal.
A has the form A = RW , where

• R is a low-rank randomised sensing matrix

• W is a basis over which the signal has a sparse rep-
resentation

Candès, Romberg & Tao,
Comm on Pure and Appl Maths 59 (2005) 1207-1233.
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LO/QO Reformulations

min
x

‖Ax− b‖22+ τ‖x‖1
or

min
x

‖x‖1 s.t. ‖Ax− b‖2 ≤ ε (or Ax = b)

or

min
x

‖Ax− b‖22 s.t. ‖x‖1 ≤ t

that is

min
x

wTw s.t. Ax− b = w and ‖x‖1 ≤ t
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Two-way Orthogonality of A

• rows of A are orthogonal to each other (A is built of
a subset of rows of an othonormal matrix U ∈Rn×n)

AAT = Im.

• small subsets of columns of A are nearly-orthogonal
to each other: Restricted Isometry Property (RIP)

‖ĀT Ā− m

n
Ik‖ ≤ δk ∈ (0,1).

Candès, Romberg & Tao,
Comm on Pure and Appl Maths 59 (2005) 1207-1233.
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Restricted Isometry Property

Matrix Ā ∈ Rm×k (k ≪ n) is built of a subset of columns
of A ∈ Rm×n.

A = −→ Ā =

ĀT Ā = = ≈ m

n
Ik.

This yields a very well conditioned optimization problem.
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Problem Reformulation

min
x

1
2
‖Ax− b‖22+ τ‖x‖1,

Replace x = x+ − x− to be able to use |x| = x++ x−.
Use |xi| = zi+ zi+n to replace ‖x‖1 with ‖x‖1 = 1T2nz.

(Increases problem dimension from n to 2n.)

min
z≥0

1
2
zTQz + cT z,

where

Q =
[

AT

−AT

]

[A −A ] =
[

ATA −ATA

−ATA ATA

]

∈ R2n×2n
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Preconditioner

Approximate

M =
[

ATA −ATA

−ATA ATA

]

+

[

Θ−1
1

Θ−1
2

]

with
P =

m

n

[
In −In

−In In

]

+

[

Θ−1
1

Θ−1
2

]

.

We expect (optimal partition):

• k entries of Θ−1 → 0, k ≪ 2n,

• 2n− k entries of Θ−1 → ∞.
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Spectral Properties of P−1M

Theorem

• Exactly n eigenvalues of P−1M are 1.

• The remaining n eigenvalues satisfy

|λ(P−1M)− 1| ≤ δk +
n

mδkL
,

where δk is the RIP-constant, and
L is a threshold of “large” (Θ1+Θ2)−1.

Fountoulakis, G., Zhlobich
Matrix-free IPM for Compressed Sensing Problems,
ERGO Technical Report, 2012.
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Preconditioning
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Computational Results: Comparing MatVecs

Prob size k NestA mf-IPM

4k 51 424 301
16k 204 461 307
64k 816 453 407
256k 3264 589 537
1M 13056 576 613

NestA, Nesterov’s smoothing gradient
Becker, Bobin and Candés,
http://www-stat.stanford.edu/~candes/nesta/

mf-IPM, Matrix-free IPM
Fountoulakis, G. and Zhlobich,
http://www.maths.ed.ac.uk/ERGO/
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Ranking of nodes in networks
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Google Problem joint work with

Kristian Woodsend

An adjacency matrix G ∈ Rn×n of web-page links is given
(web-pages are the nodes). G is column-stochastic.

Teleportation:

M = λG+ (1− λ)
1
n
eeT ,

with λ ∈ (0,1), usually λ = 0.85.

Find the dominant right eigenvector x of M
with eigenvalue equal to 1

Mx = x, such that eTx = 1, x ≥ 0.

and use x as a ranking vector.
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Google Problem

min 1
2 ‖Mx− x‖22

s.t. eTx = 1, x ≥ 0

Rearrange:

‖Mx− x‖22 = xT (M − I)T (M − I)x

to produce a standard QP formulation with

Q = (M − I)T (M − I).

A very easy QP problem!
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Preconditioner for Google Problem

Approximate

M =

[

Q+Θ−1 e

eT 0

]

with
P =

[

DQ e

eT 0

]

,

where DQ = diag{Q+Θ−1}.

G., Woodsend
Matrix-free IPM for Google Problems,
ERGO Technical Report (in preparation) 2012.
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Computational Results: mf-IPM

Size degree IPM-iters MatVecs

λ = 0.85 4k 20 6 13
16k 20 5 8
64k 20 4 5
256k 20 3 4
1M 20 3 11

λ = 1.0 4k 20 6 13
16k 20 5 8
64k 20 4 5
256k 20 3 6
1M 20 3 14

mf-IPM much faster than Nesterov’s smoothing grad.
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New IPMs:

• The inexact IPM enjoys the same worst-case
iteration complexity as the exact IPM

• Matrix-free IPM solves many difficult problems

The 2nd order information can (sometimes should)
be used in optimization.

Inexact Newton directions in IPMs:

• little (if any) increase of iteration number

• significant reduction of per-iteration cost

Might there be a probabilistic inexact approach?
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Thank You!

Matrix-Free IPM:

G., Matrix-Free Interior Point Method,
Computational Optimization and Applications,
vol. 51 (2012) 457–480.

G., Interior Point Methods 25 Years Later,
European Journal of Operational Research,
vol. 218 (2012) 587–601.
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Augmented System Matrix

Original: H =
[

−Q−Θ−1 AT

A 0

]

and regularized: HR =
[

−(Q+Θ−1+ Rp) AT

A Rd

]

.

Normal Equation Matrix

Original: G = (A(Q+Θ−1)−1AT )

and regularized: GR = (A(Q+Θ−1+Rp)−1AT +Rd).

Altman & G., OMS 11-12 (1999) 275-302.

Lake Tahoe, December 8, 2012 43



J. Gondzio IPMs for Optimization

General Case Normal Equation Matrix

Original: G = (A(Q+Θ−1)−1AT )

and regularized: GR = (A(Q+Θ−1+Rp)−1AT +Rd).

Use diagonal pivoting to compute

GR =
[
L11
L21 I

] [
DL

S

][

LT
11 LT

21
I

]

,

L =
[
L11
L21

]

is trapezoidal, k columns of Cholesky;

S ∈ R(m−k)×(m−k) is the corresp. Schur complement.
Order diagonal elements of DL and DS = diag(S):

d1 ≥ d2 ≥ · · · ≥ dk︸ ︷︷ ︸

DL

≥ dk+1 ≥ dk+2 ≥ · · · ≥ dm
︸ ︷︷ ︸

DS

.
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Preconditioner

Use the decomposition

GR =
[
L11
L21 I

] [
DL

S

] [

LT
11 LT

21
I

]

and precondition GR with

P =
[
L11
L21 I

] [
DL

DS

][

LT
11 LT

21
I

]

,

where DS is a diagonal of S.

Do not compute S.
Update only its diagonal.
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Preconditioner

Partial Cholesky of NE system

GR = (A(Q+Θ−1+Rp)−1AT + Rd) ≈ LDLL
T +DS

LDLL
T +DS = +..

L L T

• low rank matrix L: k ≪ m

• DL contains k largest pivots of GR
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Matrix-Free Implementation

AΘAT =

row i of A

To build the preconditioner we need only:

• a complete diagonal of AΘAT → dii = rTi Θ ri

• a column i of AΘAT → (AΘ) · ri
both operations are easy if we access rTi (row i of A).
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Quadratic Assignment Problem, Nugent et al.
LP relaxations of size m ≈ 2×N3 and n ≈ 8×N3

joint work with Ed Smith and J.A.J. Hall

Prob Cplex 11.0.1 mf-IPM

Simplex Barrier rank=200 rank=500
its time its time its time its time

nug12 96148 187 13 10 7 2 7 15
nug15 387873 2451 16 71 7 10 7 34
nug20 2.9·106 79451 18 1034 6 35 5 122
nug30 ? >28days - OoM 5 1272 5 4465

mf-IPM solves large problems N = 40,50, . . . ,100 in hours
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Einstein-Podolsky-Rosen Paradox, 1935

Following Wikipedia:
“[EPR paradox] refutes the dichotomy that either the
measurement of a physical quantity in one system must
affect the measurement of a physical quantity in another,
spatially separate, system or the description of reality
given by a wave function must be incomplete.”

Quantum Entanglement:
The measurements performed on spatially separated parts
of quantum systems may instantaneously influence each
other.

Bell, Physics, 1 (1964) proposed inequalities which al-
low to capture situations when this happens.
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Quantum Information Problems
with Gruca, Hall, Laskowski and Żukowski

Prob Cplex 12.0 mf-IPM

Simplex Barrier rank=200
its time its time its time

4kx4k 5418 0.8 20 15 6 4
16kx16k 62772 57 10 399 5 15
64kx64k 2.6·106 6h51m - OoM 8 3m22s
256kx256k >48h - OoM 9 28m38s
1Mx1M - - OoM 9 1h34m19s
4Mx4M - - OoM 10 9h14m49s

Intel Core i7 3.07GHz processor, 24 GB memory
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General Case (two examples):

• Quadratic Assignment Problems (QAP)
joint work with Ed Smith and J.A.J. Hall

• Quantum Information Theory Problems
with Gruca, Hall, Laskowski and Żukowski

Standard approaches (Cplex Simplex and Cplex Barrier)
break down on medium problems: 16K ≤ m,n ≤ 64K

Matrix-free IPM solves these problems in minutes

MF-IPM solves large problems m,n ≥ 1M in hours
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