

Inexact Search Directions in Interior Point Methods for Large Scale Optimization

> Jacek Gondzio

Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio/

Outline

- 1st- and 2nd-order methods for optimization
- Interior Point Methods: Pros \& Cons
- Accelerating IPMs
- Exact vs Inexact search directions and IPMs \rightarrow worst-case complexity results
- Inexact Newton \rightarrow Krylov subspace methods
- Preconditioner is a must
- Computational results
- Compressed Sensing
- Google Problem
- Conclusions

Lake Tahoe, December 8, 2012

1st-order Methods for Optimization

The 1st-order methods are applied to unconstrained optimization

$$
\begin{array}{cc}
\min & f(x)+\Psi(x) \\
\text { s.t. } & x \in X,
\end{array}
$$

where f and Ψ are convex functions (may be smooth, separable, strongly convex) and X is an easy set (\mathcal{R}^{n}, box, hyperplane, etc)

The 1st-order methods rely on gradients (or sub-gradients) of f and Ψ.

Randomization often helps.

Interior Point Methods (IPMs)

IPMs are applied to constrained optimization

$$
\begin{array}{cc}
\text { min } & f(x) \\
\text { s.t. } & g(x) \leq 0, \\
& h(x)=0,
\end{array}
$$

where f, g and h are convex functions.
IPMs easily deal with the inequalities:
LO/QO $\quad x \geq 0, x \in \mathcal{R}^{n}$
NLO $\quad g(x) \leq 0, g: \mathcal{R}^{n} \mapsto \mathcal{R}^{m}$
SOCO $\quad x \in K=K^{1} \times K^{2} \times \cdots \times K^{k}$ (cones)
SDO $\quad X \succeq 0, X \in \mathcal{S R}^{n \times n}$
IPMs rely on the 2nd-order information of f, g and h.
Lake Tahoe, December 8, 2012

Observation

- First-order methods
- complexity $\mathcal{O}(1 / \varepsilon)$ or $\mathcal{O}\left(1 / \varepsilon^{2}\right)$
- produce a rough approx. of solution quickly
- but ... struggle to converge to high accuracy
- IPMs are second-order methods (they apply Newton method to barrier subprobs)
- complexity $\mathcal{O}(\log (1 / \varepsilon))$
- produce accurate solution in a few iterations
- but ... one iteration may be expensive

Just think

For example, $\varepsilon=10^{-3}$ gives
$1 / \varepsilon=10^{3}$ and $1 / \varepsilon^{2}=10^{6}$, but $\log (1 / \varepsilon) \approx 7$.
For example, $\varepsilon=10^{-6}$ gives
$1 / \varepsilon=10^{6}$ and $1 / \varepsilon^{2}=10^{12}$, but $\log (1 / \varepsilon) \approx 14$.

But ML Community loves the 1st-order methods.

Stirring up a hornets nest:
Please give IPMs a serious consideration!
Lake Tahoe, December 8, 2012

Interior Point Methods

LO \& QO Problems

$$
\begin{array}{cl}
\min & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & A x=b, \\
& x \geq 0,
\end{array}
$$

where $A \in \mathcal{R}^{m \times n}$ has full row rank and $Q \in \mathcal{R}^{n \times n}$ is symmetric positive semidefinite. m and n may be large.

Assumption: A and Q are "operators" $A \cdot u, A^{T} \cdot v, Q \cdot u$
Expectation: Low complexity of these operations

Lake Tahoe, December 8, 2012

Interior-Point Framework

The \log barrier $-\log x_{j}$
"replaces" the inequality $x_{j} \geq 0$.

We derive the first order optimality conditions for the primal barrier problem:

$$
\begin{aligned}
A x & =b, \\
-Q x+A^{T} y+s & =c, \\
X S e & =\mu e,
\end{aligned}
$$

and apply Newton method to solve this system of (nonlinear) equations.
Lake Tahoe, December 8, 2012

The First Order Optimality Conditions

$$
\begin{aligned}
A x & =b, \\
-Q x+A^{T} y+s & =c, \\
X S e & =\mu e, \\
(x, s) & >0 .
\end{aligned}
$$

Assume primal-dual feasibility:

$$
A x=b \quad \text { and } \quad-Q x+A^{T} y+s=c
$$

Apply Newton Method to the FOC

$$
\left[\begin{array}{rrr}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
b-A x \\
c-A^{T} y-s+Q x \\
\sigma \mu e-X S e
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\xi
\end{array}\right] .
$$

Lake Tahoe, December 8, 2012

Central Path:

A set of all solutions to the optimality conds for $\mu>0$.

$$
\begin{aligned}
A x & =b, \\
-Q x+A^{T} y+s & =c \\
X S e & =\mu e .
\end{aligned}
$$

Lake Tahoe, December 8, 2012

Path Following Method:

Stay in the neighbourhood (of the central path)

$$
\begin{aligned}
& \mathcal{N}_{2}(\theta):=\left\{(x, y, s) \in \mathcal{F}^{0}:\|X S e-\mu e\|_{2} \leq \theta \mu\right\} \\
& \mathcal{N}_{S}(\gamma):=\left\{(x, y, s) \in \mathcal{F}^{0}: \gamma \mu \leq x_{i} s_{i} \leq(1 / \gamma) \mu\right\}
\end{aligned}
$$

where
$\mathcal{F}^{0}:=\left\{(x, y, s): c-A^{T} y-s+Q x=0, A x=b, x, s>0\right\}$.

Standard complexity result

Theorem (Wright, Thm 5.12).
Let $\epsilon>0$ be the required accuracy of the optimal solution. The (short-step, feasible) interior point method finds the ϵ-accurate solution such that

$$
\mu^{k} \leq \epsilon
$$

after at most

$$
K=\mathcal{O}(\sqrt{n} \log (1 / \epsilon))
$$

iterations.

Lake Tahoe. December 8, 2012

Standard IPMs for LO/QO

We know that IPMs converge in

- theory: $\mathcal{O}(\sqrt{n} \log (1 / \varepsilon))$ iterations
- practice: $\mathcal{O}(\log n \log (1 / \varepsilon))$ iterations

But the per-iteration cost may be high

- practice: between $\mathcal{O}\left(n^{2}\right)$ and $\mathcal{O}\left(n^{3}\right)$

Objective: Accelerate IPMs for LO/QO

- Find an ϵ-accurate solution in

$$
\mathcal{O}(\log n \log (1 / \epsilon))
$$

iterations (in practice).

- Lower the cost of a single IPM iteration from $\mathcal{O}\left(n^{3}\right)$ to $\mathcal{O}(n)$. Realistically: make only a few matrix-vector prods.

Use Inexact Newton Method Dembo, Eisenstat \& Steihaug, SIAM J. on Num Analysis 19 (1982) 400-408.

Lake Tahoe, December 8, 2012

Exact Newton Method

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\xi
\end{array}\right] .
$$

Inexact Newton Method

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\xi+\mathbf{r}
\end{array}\right]
$$

allows for an error in the (linearized) complementarity condition only.

General Assumption

The residual r in the inexact Newton Method satisfies:

$$
\|r\| \leq \delta\|\xi\|,
$$

where $\delta \in(0,1]$.

What is an acceptable δ ?
What happens to the complexity result?

Lake Tahoe, December 8, 2012

Short-step (Feasible) Algorithm

Stay in the small neighbourhood of the central path

$$
\mathcal{N}_{2}(\theta):=\left\{(x, y, s) \in \mathcal{F}^{0}:\|X S e-\mu e\|_{2} \leq \theta \mu\right\} .
$$

Use inexact Newton Method with the relative error

$$
\|r\| \leq \delta\|\xi\| .
$$

Aspire to reduce duality gap:

$$
\bar{\mu}=\left(1-\frac{0.1}{\sqrt{n}}\right) \mu
$$

and achieve the reduction:

$$
\bar{\mu} \leq\left(1-\frac{0.002}{\sqrt{n}}\right) \mu .
$$

Lake Tahoe. December 8, 2012

Theorem

Suppose the algorithm operates in $\mathcal{N}_{2}(\theta)$ neighbourhood of the central path and uses an inexact Newton Method with the relative precision $\delta=0.3$.
Then it converges in at most

$$
K=\mathcal{O}(\sqrt{n} \log (1 / \epsilon))
$$

iterations.
G., Convergence Analysis of an Inexact Feasible IPM for Convex QP, Tech Rep ERGO-2012-008, July 2012.

Lake Tahoe, December 8, 2012

Proof (key ideas)

Control the error in Newton Method, namely, the terms $\Delta x^{T} \Delta_{s}$ and $\|\Delta X \Delta S e\|$.
Show that if the inexactness in the Newton Method is limited then the error satisfies

$$
\|\Delta X \Delta S e\|=\mathcal{O}(\mu) .
$$

Use the full Newton step to achieve a sizeable reduction of duality gap in one step.

Conclusion

Replace the Exact Newton Method with the Inexact Newton Method

Allow for large residual

$$
\|r\| \leq \delta\|\xi\|
$$

The worst-case complexity result remains the same!

Lake Tahoe, December 8, 2012

Observation

We have not made any assumption regarding the source of inexactness.

Possible sources of inexactness

- approximate Hessian Q and/or Jacobian A;
- iterative method to compute Newton direction;
- probabilistic approach?

From Theory to Practice

- Compressed Sensing with K. Fountoulakis and P. Zhlobich
- Google Problem with K. Woodsend
both exploit/rely on probabilistic arguments.

Sparse Approximations joint work with Kimon Fountoulakis and Pavel Zhlobich

- Statistics: Estimate x from observations
- Wavelet-based signal/image reconstr./restoration
- Compressed Sensing (Signal Processing)

Re-cast as large dense quadratic optimization problem:

$$
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\tau\|x\|_{1},
$$

where $A \in \mathcal{R}^{m \times n}$.
The ML Community likes this problem very much.
Lake Tahoe. December 8, 2012

Bayesian Statistics Viewpoint

Estimate x from observations

$$
b=A x+e,
$$

where b are observations and e is the Gaussian noise.
$\rightarrow \min _{x}\|A x-b\|_{2}^{2}$
If the prior on x is Laplacian $\left(\log p(x)=-\lambda\|x\|_{1}+K\right)$ then

$$
\min _{x}\|A x-b\|_{2}^{2}+\tau\|x\|_{1}
$$

Tibshirani, J. of Royal Stat Soc B 58 (1996) 267-288.

Lake Tahoe, December 8, 2012

Wavelet-based Signal/Image Reconstruction

A has the form $A=R W$, where

- R is the observation operator (think: tomographic projection)
R is a matrix representation of this operator
- W is a wavelet basis or a redundant dictionary operation $W x$ corresponds to performing an inverse wavelet transform
- x is the vector representation coefficients of the unknown signal/image

Chen, Donoho \& Saunders, SIAM J. on Sci Comp 20 (1998) 33-61.
Lake Tahoe, December 8, 2012

Compressed Sensing

Relatively small number of random projections of a sparse signal can contain most of its salient information.
If a signal is sparse (or approximately sparse) in some orthonormal basis, then an accurate reconstruction can be obtained from random projections of the original signal. A has the form $A=R W$, where

- R is a low-rank randomised sensing matrix
- W is a basis over which the signal has a sparse representation

Candès, Romberg \& Tao,
Comm on Pure and Appl Maths 59 (2005) 1207-1233.
Lake Tahoe, December 8, 2012

LO/QO Reformulations

$$
\min _{x}\|A x-b\|_{2}^{2}+\tau\|x\|_{1}
$$

or

$$
\min _{x}\|x\|_{1} \quad \text { s.t. } \quad\|A x-b\|_{2} \leq \varepsilon \quad(\text { or } \quad A x=b)
$$

or

$$
\min _{x}\|A x-b\|_{2}^{2} \quad \text { s.t. } \quad\|x\|_{1} \leq t
$$

that is

$$
\min _{x} w^{T} w \quad \text { s.t. } \quad A x-b=w \quad \text { and } \quad\|x\|_{1} \leq t
$$

Lake Tahoe. December 8. 2012

Two-way Orthogonality of A

- rows of A are orthogonal to each other (A is built of a subset of rows of an othonormal matrix $U \in \mathcal{R}^{n \times n}$)

$$
A A^{T}=I_{m} .
$$

- small subsets of columns of A are nearly-orthogonal to each other: Restricted Isometry Property (RIP)

$$
\left\|\bar{A}^{T} \bar{A}-\frac{m}{n} I_{k}\right\| \leq \delta_{k} \in(0,1) .
$$

Candès, Romberg \& Tao,
Comm on Pure and Appl Maths 59 (2005) 1207-1233.

Restricted Isometry Property

Matrix $\bar{A} \in \mathcal{R}^{m \times k}(k \ll n)$ is built of a subset of columns of $A \in \mathcal{R}^{m \times n}$.

$$
\begin{aligned}
& A=\square \quad \square \square \\
& \hline
\end{aligned}
$$

This yields a very well conditioned optimization problem.
Lake Tahoe. December 8, 2012

Problem Reformulation

$$
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\tau\|x\|_{1},
$$

Replace $x=x^{+}-x^{-}$to be able to use $|x|=x^{+}+x^{-}$. Use $\left|x_{i}\right|=z_{i}+z_{i+n}$ to replace $\|x\|_{1}$ with $\|x\|_{1}=1_{2 n}^{T} z$. (Increases problem dimension from n to $2 n$.)

$$
\min _{z \geq 0} \frac{1}{2} z^{T} Q z+c^{T} z,
$$

where

$$
Q=\left[\begin{array}{r}
A^{T} \\
-A^{T}
\end{array}\right][A-A]=\left[\begin{array}{rr}
A^{T} A & -A^{T} A \\
-A^{T} A & A^{T} A
\end{array}\right] \in \mathcal{R}^{2 n \times 2 n}
$$

Lake Tahoe, December 8, 2012

Preconditioner

Approximate

$$
\mathcal{M}=\left[\begin{array}{rr}
A^{T} A & -A^{T} A \\
-A^{T} A & A^{T} A
\end{array}\right]+\left[\begin{array}{ll}
\Theta_{1}^{-1} & \\
& \Theta_{2}^{-1}
\end{array}\right]
$$

with

$$
\mathcal{P}=\frac{m}{n}\left[\begin{array}{rr}
I_{n} & -I_{n} \\
-I_{n} & I_{n}
\end{array}\right]+\left[\begin{array}{ll}
\Theta_{1}^{-1} & \\
& \Theta_{2}^{-1}
\end{array}\right] .
$$

We expect (optimal partition):

- k entries of $\Theta^{-1} \rightarrow 0, \quad k \ll 2 n$,
- $2 n-k$ entries of $\Theta^{-1} \rightarrow \infty$.

Spectral Properties of $\mathcal{P}^{-1} \mathcal{M}$

Theorem

- Exactly n eigenvalues of $\mathcal{P}^{-1} \mathcal{M}$ are 1 .
- The remaining n eigenvalues satisfy

$$
\left|\lambda\left(\mathcal{P}^{-1} \mathcal{M}\right)-1\right| \leq \delta_{k}+\frac{n}{m \delta_{k} L},
$$

where δ_{k} is the RIP-constant, and
L is a threshold of "large" $\left(\Theta_{1}+\Theta_{2}\right)^{-1}$.

Fountoulakis, G., Zhlobich
Matrix-free IPM for Compressed Sensing Problems, ERGO Technical Report, 2012.

Lake Tahoe. December 8, 2012

Preconditioning

\longrightarrow good clustering of eigenvalues

Computational Results: Comparing MatVecs

Prob size	k	NestA	mf-IPM
4 k	51	424	301
16 k	204	461	307
64 k	816	453	407
26 k	3264	589	537
1 M	13056	576	613

NestA, Nesterov's smoothing gradient Becker, Bobin and Candés,
http://www-stat.stanford.edu/~ candes/nesta/ mf-IPM, Matrix-free IPM Fountoulakis, G. and Zhlobich, http://www.maths.ed.ac.uk/ERGO/
Lake Tahoe, December 8, 2012

Ranking of nodes in networks

Lake Tahoe, December 8, 2012

Google Problem joint work with

Kristian Woodsend

An adjacency matrix $G \in \mathcal{R}^{n \times n}$ of web-page links is given (web-pages are the nodes). G is column-stochastic.
Teleportation:

$$
M=\lambda G+(1-\lambda) \frac{1}{n} e e^{T},
$$

with $\lambda \in(0,1)$, usually $\lambda=0.85$.
Find the dominant right eigenvector x of M with eigenvalue equal to 1

$$
M x=x, \quad \text { such that } \quad e^{T} x=1, x \geq 0 .
$$

and use x as a ranking vector.
Lake Tahoe, December 8, 2012

Google Problem

$$
\begin{array}{cl}
\min & \frac{1}{2}\|M x-x\|_{2}^{2} \\
\text { s.t. } & e^{T} x=1, x \geq 0
\end{array}
$$

Rearrange:

$$
\|M x-x\|_{2}^{2}=x^{T}(M-I)^{T}(M-I) x
$$

to produce a standard QP formulation with

$$
Q=(M-I)^{T}(M-I)
$$

A very easy QP problem!

Lake Tahoe. December 8, 2012

Preconditioner for Google Problem

Approximate

$$
\mathcal{M}=\left[\begin{array}{cc}
Q+\Theta^{-1} & e \\
e^{T} & 0
\end{array}\right]
$$

with

$$
\mathcal{P}=\left[\begin{array}{cc}
D_{Q} & e \\
e^{T} & 0
\end{array}\right],
$$

where $D_{Q}=\operatorname{diag}\left\{Q+\Theta^{-1}\right\}$.
G., Woodsend

Matrix-free IPM for Google Problems,
ERGO Technical Report (in preparation) 2012.

Lake Tahoe. December 8. 2012

Computational Results: mf-IPM

Size degree IPM-iters MatVecs

$\lambda=0.85$	4 k	20	6	13
	16 k	20	5	8
	64 k	20	4	5
	256 k	20	3	4
	1 M	20	3	11
$\lambda=1.0$	4 k	20	6	13
	16 k	20	5	8
	64 k	20	4	5
	256 k	20	3	6
	1 M	20	3	14

mf-IPM much faster than Nesterov's smoothing grad.
Lake Tahoe. December 8, 2012

New IPMs:

- The inexact IPM enjoys the same worst-case iteration complexity as the exact IPM
- Matrix-free IPM solves many difficult problems

The 2 nd order information can (sometimes should) be used in optimization.

Inexact Newton directions in IPMs:

- little (if any) increase of iteration number
- significant reduction of per-iteration cost

Might there be a probabilistic inexact approach?

Thank You!

Matrix-Free IPM:

G., Matrix-Free Interior Point Method, Computational Optimization and Applications, vol. 51 (2012) 457-480.
G. Interior Point Methods 25 Years Later, European Journal of Operational Research, vol. 218 (2012) 587-601.

Lake Tahoe, December 8, 2012

Augmented System Matrix

Original:

$$
\mathcal{H}=\left[\begin{array}{cc}
-Q-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]
$$

and regularized: $\quad \mathcal{H}_{R}=\left[\begin{array}{cc}-\left(Q+\Theta^{-1}+R_{p}\right) & A^{T} \\ A & R_{d}\end{array}\right]$.
Normal Equation Matrix
Original:

$$
\mathcal{G}=\left(A\left(Q+\Theta^{-1}\right)^{-1} A^{T}\right)
$$

and regularized: $\quad \mathcal{G}_{R}=\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right)$.

Altman \& G., OMS 11-12 (1999) 275-302.
Lake Tahoe, December 8, 2012

General Case Normal Equation Matrix
Original:

$$
\mathcal{G}=\left(A\left(Q+\Theta^{-1}\right)^{-1} A^{T}\right)
$$

and regularized: $\quad \mathcal{G}_{R}=\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right)$.
Use diagonal pivoting to compute

$$
\mathcal{G}_{R}=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D_{L} & \\
& S
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
& I
\end{array}\right],
$$

$L=\left[\begin{array}{c}L_{11} \\ L_{21}\end{array}\right]$ is trapezoidal, k columns of Cholesky;
$S \in \mathcal{R}^{(m-k) \times(m-k)}$ is the corresp. Schur complement.
Order diagonal elements of D_{L} and $D_{S}=\operatorname{diag}(S)$:

$$
\underbrace{d_{1} \geq d_{2} \geq \cdots \geq d_{k}}_{D_{L}} \geq \underbrace{d_{k+1} \geq d_{k+2} \geq \cdots \geq d_{m}}_{D_{S}} .
$$

Lake Tahoe. December 8, 2012

Preconditioner

Use the decomposition

$$
\mathcal{G}_{R}=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right]\left[\begin{array}{ll}
D_{L} & \\
& S
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
& I
\end{array}\right]
$$

and precondition \mathcal{G}_{R} with

$$
P=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D_{L} & \\
& D_{S}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
& I
\end{array}\right],
$$

where D_{S} is a diagonal of S.
Do not compute S.
Update only its diagonal.
Lake Tahoe. December 8, 2012

Preconditioner

Partial Cholesky of NE system

$$
\begin{gathered}
\mathcal{G}_{R}=\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right) \approx L D_{L} L^{T}+D_{S} \\
L D_{L} L^{T}+D_{S}=L_{L} \cdot \Delta \cdot L^{T}+\square
\end{gathered}
$$

- low rank matrix L: $k \ll m$
- D_{L} contains k largest pivots of \mathcal{G}_{R}

Lake Tahoe, December 8, 2012

Matrix-Free Implementation

To build the preconditioner we need only:

- a complete diagonal of $A \Theta A^{T} \rightarrow d_{i i}=r_{i}^{T} \Theta r_{i}$
- a column i of $A \Theta A^{T}$

$$
\rightarrow(A \Theta) \cdot r_{i}
$$

both operations are easy if we access r_{i}^{T} (row i of A).
Lake Tahoe, December 8, 2012

Quadratic Assignment Problem, Nugent et al. LP relaxations of size $m \approx 2 \times N^{3}$ and $n \approx 8 \times N^{3}$ joint work with Ed Smith and J.A.J. Hall

mf-IPM solves large problems $N=40,50, \ldots, 100$ in hours
Lake Tahoe, December 8, 2012

Einstein-Podolsky-Rosen Paradox, 1935

Following Wikipedia:
"[EPR paradox] refutes the dichotomy that either the measurement of a physical quantity in one system must affect the measurement of a physical quantity in another, spatially separate, system or the description of reality given by a wave function must be incomplete."

Quantum Entanglement:

The measurements performed on spatially separated parts of quantum systems may instantaneously influence each other.

Bell, Physics, 1 (1964) proposed inequalities which allow to capture situations when this happens.

[^0]
Quantum Information Problems

 with Gruca, Hall, Laskowski and Żukowski| Prob | Cplex 12.0 | | mf-IPM | |
| :---: | :---: | :---: | :---: | :---: |
| | Simplex its time | Barrier its time | its | $\begin{array}{r} \text { rank }=200 \\ \text { time } \end{array}$ |
| 4kx4k | 54180.8 | $20 \quad 15$ | 6 | |
| 16kx16k | 6277257 | 10399 | 5 | 15 |
| 64 kx 64 k | $2.6 \cdot 10^{6} 6 \mathrm{~h} 51 \mathrm{~m}$ | - OoM | 8 | 3 m 22 s |
| 256kx256k | >48h | - OoM | 9 | 28 m 38 s |
| 1Mx1M | | - OoM | | 1h34m19s |
| 4Mx4M | | - OoM | | 9h14m49s |

Intel Core i 73.07 GHz processor, 24 GB memory

[^1]General Case (two examples):

- Quadratic Assignment Problems (QAP) joint work with Ed Smith and J.A.J. Hall
- Quantum Information Theory Problems with Gruca, Hall, Laskowski and Żukowski

Standard approaches (Cplex Simplex and Cplex Barrier) break down on medium problems: $16 K \leq m, n \leq 64 K$
Matrix-free IPM solves these problems in minutes

MF-IPM solves large problems $m, n \geq 1 M$ in hours

[^0]: Lake Tahoe. December 8. 2012

[^1]: Lake Tahoe. December 8, 2012

